51 research outputs found

    Genome-Wide Association Study (Gwas) To Uncover Genetic Risk Factors Associated With Low Bone Mineral Density And Osteoporosis In Qatar Population

    Get PDF
    Osteoporosis is an increasingly prevalent, global health burden characterized by low bone mineral density (BMD) and increased fracture risk. Despite the serious consequences of osteoporosis and the significant impact it can have on human health, the majority of affected individuals are unaware of the disease because of its asymptomatic 'silent' nature. Understanding the genetic basis of the Osteoporosis is crucial to fully elucidate the etiology of the disease. Towards this goal, genome-wide association studies (GWAS) have identified a number of promising genetic variants that are associated with osteoporosis and low BMD. Here, we undertook a genomewide association study (GWAS) in 3000 healthy Qatari individuals from Qatar Biobank to identify risk genetic variants associated with low BMD in the Qatari population. 19 significant single-nucleotide polymorphisms (SNPs) have been identified to be associated with BMD (P<5×10−8). Of these, 6 SNPs were replicated and directionally consistent in UK Biobank, in which 2 of these SNPs were identified and known to be involved in the Wnt signaling pathways which is important in bone formation. The other 13 SNPs weren’t associated to any diseases and thus were regarded as novel. 8 of these variants were intronic variants harbored in 8 gene loci; MALAT1, MRPL39, FASLG, SAG, FAM189A2, RP11-15A1.7, LSAMP, and BMPR1B and 5 were intergenic variants. The finding of our study, which to our knowledge is the first GWAS of any form of bone disease in the Qatari population, provide new insights into the genetic architecture of BMD. Further studies are needed to identify the causal variants and their functional effects to unveil unknown players contributing to BMD variation and fracture susceptibility

    A Whole-Genome Sequencing Association Study of Low Bone Mineral Density Identifies New Susceptibility Loci in the Phase I Qatar Biobank Cohort

    Get PDF
    Introduction: Bone density disorders are characterized by a reduction in bone mass density and strength, which lead to an increase in the susceptibility to sudden and unexpected fractures. Despite the serious consequences of low bone mineral density (BMD) and its significant impact on human health, most affected individuals may not know that they have the disease because it is asymptomatic. Therefore, understanding the genetic basis of low BMD and osteoporosis is essential to fully elucidate its pathobiology and devise preventative or therapeutic approaches. Materials and Methods: we sequenced the whole genomes of 3000 individuals from the Qatar Biobank and conducted genome-wide association analyses to identify genetic risk factors associated with low BMD in the Qatari population. Results: Fifteen variants were significantly associated with total body BMD (p < 5 × 10-8). Of these, five variants had previously been reported by and were directionally consistent with previous genome-wide association study data. Ten variants were new: six intronic variants located at six gene loci (MALAT1/TALAM1, FASLG, LSAMP, SAG, FAM189A2, and LOC101928063) and four intergenic variants. Conclusion: This first such study in Qatar provides a new insight into the genetic architecture of low BMD in the Qatari population. Nevertheless, more studies are needed to validate these findings and to elucidate the functional effects of these variants on low BMD and bone fracture susceptibility

    Systematic Review of the Respiratory Syncytial Virus (RSV) Prevalence, Genotype Distribution, and Seasonality in Children from the Middle East and North Africa (MENA) Region

    Get PDF
    Respiratory syncytial virus (RSV) is one of the most common viruses to infect children worldwide and is the leading cause of lower respiratory tract illness (LRI) in infants. This study aimed to conduct a systematic review by collecting and reviewing all the published knowledge about the epidemiology of RSV in the Middle East and North Africa (MENA) region. Therefore, we systematically searched four databases; Embase, Medline, Scopus, and Cochrane databases from 2001 to 2019 to collect all the information related to the RSV prevalence, genotype distribution, and seasonality in children in MENA region. Our search strategy identified 598 studies, of which 83 met our inclusion criteria, which cover the past 19 years (2000–2019). Odds ratio (OR) and confidence interval (CI) were calculated to measure the association between RSV prevalence, gender, and age distribution. An overall prevalence of 24.4% (n = 17,106/69,981) of respiratory infections was recorded for RSV. The highest RSV prevalence was reported in Jordan (64%, during 2006–2007) and Israel (56%, 2005–2006). RSV A subgroup was more prevalent (62.9%; OR = 2.9, 95%CI = 2.64–3.13) than RSV B. RSV was most prevalent in children who were less than 12 months old (68.6%; OR = 4.7, 95%CI = 2.6–8.6) and was higher in males (59.6%; OR = 2.17, 95%CI = 1.2–3.8) than in female infants. Finally, the highest prevalence was recorded during winter seasons in all countries, except for Pakistan. RSV prevalence in the MENA region is comparable with the global one (25.5% vs. 22%). This first comprehensive report about RSV prevalence in the MENA region and our data should be important to guide vaccine introduction decisions and future evaluation

    Dysregulation of Signaling Pathways Due to Differentially Expressed Genes From the B-Cell Transcriptomes of Systemic Lupus Erythematosus Patients - A Bioinformatics Approach.

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that is clinically complex and has increased production of autoantibodies. Via emerging technologies, researchers have identified genetic variants, expression profiling of genes, animal models, and epigenetic findings that have paved the way for a better understanding of the molecular and genetic mechanisms of SLE. Our current study aimed to illustrate the essential genes and molecular pathways that are potentially involved in the pathogenesis of SLE. This study incorporates the gene expression profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between the B-cell transcriptomes of SLE patients and healthy controls were screened using the GEO2R web tool. The identified DEGs were subjected to STRING analysis and Cytoscape to explore the protein-protein interaction (PPI) networks between them. The MCODE (Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the significant pathways that were enriched. For integrative analysis, we used GeneGo Metacore, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and enriched pathways between the datasets. Our study identified 4 upregulated and 13 downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed the pathways that were statistically significant, including pathways involving T-cell costimulation, lymphocyte costimulation, negative regulation of vascular permeability, and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway. Additionally, potentially enriched pathways, such as the signaling pathways induced by oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen receptor activation pathway, were identified from the DEGs that were mainly associated with the immune system. Four genes (, , , and ) were identified to be strongly associated with SLE. Our integrative analysis using a multitude of bioinformatics tools might promote an understanding of the dysregulated pathways that are associated with SLE development and progression. The four DEGs in SLE patients might shed light on the pathogenesis of SLE and might serve as potential biomarkers in early diagnosis and as therapeutic targets for SLE

    Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity

    Get PDF
    Over the last decade, the zebrafish (Danio rerio) has emerged as amodel organismfor cardiovascular research.Zebrafish have several advantages over mammalian models. For instance, the experimental cost of using zebrafish is comparatively low; the embryos are transparent, develop externally, and have high fecundity making them suitable for large-scale genetic screening. More recently, zebrafish embryos have been used for the screening of a variety of toxic agents, particularly for cardiotoxicity testing. Zebrafish has been shown to exhibit physiological responses that are similar to mammals after exposure to medicinal drugs including xenobiotics, hormones, cancer drugs, and also environmental pollutants, including pesticides and heavy metals. In this review, we provided a summary for recent studies that have used zebrafish to investigate themolecularmechanisms of drug-induced cardiotoxicity. More specifically, we focused on the techniques that were exploited by us and others for cardiovascular toxicity assessment and described several microscopic imaging and analysis protocols that are being used for the estimation of a variety of cardiac hemodynamic parameters.Huseyin C. Yalcin is supported by Qatar National Research Fund (QNRF), National Priority Research Program NPRP 10-0123-170222,and Qatar University internal funds,QUUGBRC-2017-3 and QUST-BRC-SPR\2017-1. The publication of this article was partially funded by the Qatar National Library

    Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model

    Get PDF
    The use of chitosan nanoparticles (ChNPs) in various biological and environmental applications is attracting great interest. However, potential side effects related to ChNP toxicity remain the major limitation hampering their wide application. For the first time, we investigate the potential organ-specific (cardiac, hepatic, and neuromuscular) toxicity of ChNPs (size 100–150 nm) using the zebrafish embryo model. Our data highlight the absence of both acute and teratogenic toxic effects of ChNPs (~100% survival rate) even at the higher concentration employed (200 mg/L). Although no single sign of cardiotoxicity was observed upon exposure to 200 mg/L of ChNPs, as judged by heartbeat rate, the corrected QT interval (QTc, which measures the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle), maximum cardiac arrest, and ejection fraction assays, the same dosage elicited the impairment of both liver size (decreased liver size, but without steatosis and lipid yolk retention) and neurobehavioral activity (increased movement under different light conditions). Although the observed toxic effect failed to affect embryo survival, whether a prolonged ChNP treatment may induce other potentially harmful effects remains to be elucidated. By reporting new insights on their organ-specific toxicity, our results add novel and useful information into the available data concerning the in vivo effect of ChNPs.This work was supported by the NPRP grant [#9-254-2-120] from the Qatar National Research Fund, a Member of Qatar Foundation. The study was also partially supported by the grants [GCC-2017-001] given to G.K.N. and [QUCG-CHS-2018n2019-1] given to G.P

    Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2

    Get PDF
    The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19

    Potential Adverse Effects of Resveratrol: A Literature Review.

    Get PDF
    Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE

    Performance evaluation of novel fluorescent-based lateral immune flow assay (LIFA) for rapid detection and quantification of total anti-SARS-CoV-2 S-RBD binding antibodies in infected individuals.

    Get PDF
    The vast majority of the commercially available LFIA is used to detect SARS-CoV-2 antibodies qualitatively. Recently, a novel fluorescence-based LIFA test was developed for quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). To evaluate the performance of the fluorescence LIFA Finecare 2019-nCoV S-RBD test along with its reader (Model No.: FS-113). Plasma from 150 RT-PCR confirmed-positive individuals and 100 pre-pandemic samples were tested by FinCare to access sensitivity and specificity. For qualitative and quantitative validation of the FinCar measurements, the BAU/mL results of FinCare were compared with results of two reference assays: the surrogate virus-neutralizing test (sVNT, GenScript, USA), and the VIDAS®3 automated assay (BioMérieux, France). Finecare showed 92% sensitivity and 100% specificity compared to PCR. Cohen's Kappa statistic denoted moderate and excellent agreement with sVNT and VIDAS®3, ranging from 0.557 (95% CI: 0.32-0.78) to 0.731 (95% CI: 0.51-0.95), respectively. A strong correlation was observed between Finecare/sVNT (r=0.7, p<0.0001) and Finecare/VIDAS®3 (r=0.8, p<0.0001). Finecare is a reliable assay and can be used as a surrogate to assess binding and neutralizing antibody response post-infection or vaccination, particularly in none or small laboratory settings

    JC-10 probe as a novel method for analyzing the mitochondrial membrane potential and cell stress in whole zebrafish embryos

    Get PDF
    Background: A sensitive method to investigate cellular stress and cytotoxicity is based on measuring mitochondrial membrane potential. Recently, JC-10, was developed to measure mitochondrial membrane potential in vitro and used as an indicator for cytotoxicity. Yet, JC-10 has never been used in vivo (whole organism). In normal cells, JC-10 concentrates in the mitochondrial matrix, where it forms red fluorescent aggregates. However, in apoptotic/necrotic cells, JC-10 diffuses out of the mitochondria, changes to monomeric form, and stains cells in green. Here, we aimed to develop and optimize a JC-10 assay to measure cytotoxicity in zebrafish embryo. We also investigated the effectiveness of JC-10 assay by comparing it to common cytotoxicity assays. Methods: Zebrafish embryos were exposed to a toxic surfactant AEO-7 at no observed effect concentration (6.4 μg/L), and then cytotoxicity was measured using (i) JC-10 mitochondrial assay, (ii) acridine orange (AO), (iii) TUNEL assay, and (iv) measuring the level of Hsp70 by western blotting. Results: As compared to the negative control, embryos treated with NOEC of AEO-7 did not show significant cytotoxicity when assessed by AO, TUNEL or western blotting. However, when JC-10 was used under the same experimental conditions, a significant increase of green:red fluorescent ratio signal was detected in the AEO-7 treated embryos, indicating mitochondrial damage and cellular cytotoxicity. Noteworthy, the observed green: red ratio increase was dose dependent, suggesting specificity of the JC-10 assay. Conclusion: JC-10 is a sensitive in vivo method, thus, can be used as surrogate assay to measure cytotoxicity in whole zebrafish embryos
    • …
    corecore