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ABSTRACT 

YOUNES, NADIN, NAGY NY., Masters of Science : June : [2019:], 

Biomedical Sciences 

Title: Genome Wide Association Study (GWAS) to Uncover Genomic Risk Factors 

Associated with Low Bone Mineral Density and Osteoporosis in The Qatari 

population   

Supervisor of Thesis: Marawan Abdelhamid Abou Madi. 

 

Osteoporosis is an increasingly prevalent, global health burden characterized by 

low bone mineral density (BMD) and increased fracture risk. Despite the serious 

consequences of osteoporosis and the significant impact it can have on human health, 

the majority of affected individuals are unaware of the disease because of its 

asymptomatic 'silent' nature. Understanding the genetic basis of the Osteoporosis is 

crucial to fully elucidate the etiology of the disease. Towards this goal, genome-wide 

association studies (GWAS) have identified a number of promising genetic variants 

that are associated with osteoporosis and low BMD. Here, we undertook a genome-

wide association study (GWAS) in 3000 healthy Qatari individuals from Qatar Biobank 

to identify risk genetic variants associated with low BMD in the Qatari population. 19 

significant single-nucleotide polymorphisms (SNPs) have been identified to be 

associated with BMD (P<5×10−8). Of these, 6 SNPs were replicated and directionally 

consistent in UK Biobank, in which 2 of these SNPs were identified and known to be 

involved in the Wnt signaling pathways which is important in bone formation. The 

other 13 SNPs weren’t associated to any diseases and thus were regarded as novel. 8 of 

these variants were intronic variants harbored in 8 gene loci; MALAT1, MRPL39, 

FASLG, SAG, FAM189A2, RP11-15A1.7, LSAMP, and BMPR1B and 5 were intergenic 



  

iv 

 

variants. The finding of our study, which to our knowledge is the first GWAS of any 

form of bone disease in the Qatari population, provide new insights into the genetic 

architecture of BMD. Further studies are needed to identify the causal variants and their 

functional effects to unveil unknown players contributing to BMD variation and 

fracture susceptibility.  
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Chapter 1: Introduction  

Osteoporosis is a common systemic skeletal disease characterized by reduction 

of bone mass and density, resulting in increased susceptibility to bone fractures 

(Munch & Shapiro, 2006). Osteoporosis (meaning “porous bones”) is the most 

common bone disease in humans, representing a serious public health problem. It has 

been estimated that, worldwide, more than 200 million people are suffering from 

osteoporosis (Sözen, Özışık, & Başaran, 2017).  

Osteoporosis is described as a clinically silent disease because of its 

asymptomatic nature that makes it difficult to diagnose in its first stages, it is often 

recognized only when the first fracture occurs (Sharma, Tandon, Mahajan, Kour, & 

Kumar, 2006). Osteoporosis is responsible for ~9 million fractures each year 

worldwide (Kanis et al., 2012). Bone fractures occur mostly in the hip, wrist or spine, 

impairing the quality of life and conferring substantial risk for morbidity and 

mortality. Although affecting both genders, osteoporosis is more prevalent in 

postmenopausal women, this is in part, due to declining estrogen levels which have 

been shown to accelerate bone loss. However, the significant prevalence of the disease 

in old men and its absence in some postmenopausal women indicate that other factors 

are also involved in the development of osteoporosis. Factors such as tobacco and 

alcohol consumption, physical activity, and body weight have all been previously 

reported to influence bone mass (Tian et al., 2017). The high prevalence of 

osteoporosis poses a serious economic burden on patients, families, and nation. Early 

identification and management of people with low BMD is crucial to reduce the 

incidence of osteoporotic fractures. Bone mineral density (BMD) is widely recognized 

as one of the most important predictors of osteoporotic fractures and is the primary 
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clinical measurement used to diagnose osteoporosis. Dual-energy x-ray 

absorptiometry (DXA) is the gold standard for assessing BMD worldwide. Emerging 

evidence suggests a link between genetic variation and impairment of BMD, with 

heritability estimates of 0.6 to 0.8 (Peacock, Econs, Turner, & Foroud, 2002). The 

heritability is usually measured with twin studies, which can be determined by 

concordance rate (Sahu & Prasuna, 2016). Innovative advances in high-throughput 

genotyping and the genome-wide database of human genetic variation produced by 

the HapMap project have made the genome-wide association (GWA) studies 

technically feasible, unraveling complex associations between common genetic 

variants and a growing range of diseases and traits. A number of genome-wide 

association studies and their meta-analyses have been conducted to explore the 

relationship between genetic variation and bone mineral density (Karol Estrada et al., 

2012; Kemp et al., 2017; Stuart K. Kim, 2018; Koller et al., 2010) identifying dozens 

of genomic loci. However, the cumulative effects of these identified loci account for 

only 5.8% of total BMD variation (K. Estrada et al., 2012) implying that many of the 

genes that influence BMD remain to be unveiled. Thus, Identification of genes 

regulating BMD, particularly at the most common skeletal fracture sites is critical to 

provide insights into the genetic architecture of osteoporosis and fracture risk. 

Aims: 

The aim of our study is to investigate the genetic architecture of bone mineral 

density variations and to evaluate the role of genetic factors in the pathogenesis of 

osteoporosis, thereby discovering new genetic loci and the biological pathways, which 

may help identify drug targets for the prevention and treatment of fragility fracturs.  

Specific Goals:  
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1) Investigate the association of BMD values with common genetic variations.  

2) Explore the gender effect on BMD and the association of Vitamin D levels with 

BMD.  
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Chapter 2: Literature Review 

 2.1 Bone Physiology  

This section discusses the gross anatomy and histology of bone tissue, as well 

as describes the crucial process of structural remodeling of the bone. 

 

2.1.1 Bone Architecture 

Human bones are complex structure that are critical for providing mobility, and 

protection for the whole body, and more importantly, providing a reservoir for storing 

essential minerals. Bone strength is composed of two main components: a) the bone 

mineral density (BMD) and b) the bone quality, which are the bone architecture, bone 

turnover, and the mineralization status (Lorincz, Manske, & Zernicke, 2009). The 

BMD is the amount of bone mineral in the bone tissue, it is the most commonly used 

expression that measures the overall bone strength in an individual. It is estimated to 

account for approximately 70% of bone strength (Sözen et al., 2017). Thus, BMD is 

essential for the diagnosis of osteoporosis and to provide overall information on the 

bone fracture risk. 

Healthy human bones are composed of two different types of structural tissue: 

Cortical and Cancellous Bone. Cortical (compact) bone is the dense hard outer shell 

of the bones that forms the protective layer around the inner trabecular bone (Iolascon 

et al., 2013). It is critical for providing strength to all the long bones of the body, as 

well as providing sites for attachment of tendons and ligaments. The cortical bones 

makeup approximately 80% of the skeletal mass (Clarke, 2008) and are vital for 

supporting the body structure and weight as it is highly resistant to bending and 

torsion. The remaining 20 % of the skeletal mass are Cancellous bone (Clarke, 2008), 
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also referred to as spongy or trabecular bone. it is found mainly at the ends of 

long bones, as well as in the pelvis, ribs, skull, and the vertebral column.  It consists 

of fine sponge-like lattice and has a much higher turnover rate than cortical bone, thus, 

it has a major role in metabolism. In addition, the cancellous bones are very porous 

and contain the red bone marrow thus, it is weaker and more prone to fracture 

compared to cortical bone. Moreover, it has a honeycombed or spongy appearance, in 

which the bone matrix is organized into a three-dimensional latticework, called 

trabeculae. The trabeculae contain three types of bone cells: a) the osteoblasts, b) the 

osteocytes and c) the osteoclasts (Florencio-Silva, Sasso, Sasso-Cerri, Simões, & 

Cerri, 2015). The osteoblasts are cells derived from mesenchymal stem cells, they 

produce bone extracellular matrix and are responsible for bone mineralization. They 

do this by depositing a protein mixture called “osteoid”, which contains collagen, as 

well as depositing minerals including calcium into the osteoid to make new bones. 

Osteocytes are mature osteoblasts that have been embedded in the bone matrix. They 

are the most abundant cells in bone, comprising 90-95% of all bone cells (Schaffler 

& Kennedy, 2012). They act as sensory cells that are involved in signaling processes 

inside the bone. They form an extensive network through their projections that 

connect them to other bone cells, endothelial cells, and hematopoietic cells (Schaffler 

& Kennedy, 2012). Osteoclasts are large multinucleated cells responsible for bone 

resorption, they break down and destroy old or damaged bone tissue, initiating bone 

repair and replacement by osteoblasts. This destruction-rebuilding cycle is constantly 

ongoing to ensure the upkeep of the bone’s structural integrity. 
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2.1.2 Differences between trabecular and cortical bone 

The cortical bones are stiffer and more resistant to higher stresses compared to 

trabecular bone, however, they are more brittle (Carter Dr. & Hayes, 1977; Keaveny 

& Hayes, 1993).  In vitro, the trabecular bone can withstand the strain up to 30% 

whilst, cortical bone fails to withstand strain of only 2% (Osterhoff et al., 2016).  In 

addition, the biomechanical structure of cortical bone is uniform while trabecular bone 

shows a wide variation in strength and stiffness. To a large extent, this variability 

depends on the apparent density of the trabecular bones. Due to its heterogeneity, the 

trabecular bone modulus can vary 100-fold from one location to another within the 

same metaphysis (Keaveny & Hayes, 1993). Moreover, the stiffness and strength of 

cortical and trabecular bone depend on the loading direction, indicating its anisotropic 

microstructure (Galante J., Rostoker W., & Ray, 1970). Overall, the bones can resist 

higher compression loads than tension loads and to higher tension loads than shear 

loads(Carter Dr Fau - Hayes & Hayes, 1977).  

The location of the bone in the human body and the forces acting on it determine 

its unique microstructure and composition compared to other bones in other locations. 

For instance, the vertebral column must resist the high and repeating axial 

compression loads but, it experiences a much less shear or tension loads (Mizrahi, 

Keaveny, Edwards, & Hayes, 1976). On the other hand, the femoral neck or the 

proximal humerus are mainly subjected to high shear and bending forces compared to 

the vertebral column, which creates a combination of compression, tension, and shear 

by which both show a distinct need for a cortical structure.  

In the body, bones experience different loads from different directions and in 

different intensity and frequency over time. Bone has two main mechanical responses 
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to the changing loading patterns: by altering the structural density and by increasing 

the degree of structural orientation along the acting force vectors, i.e. anisotropy 

(Keaveny & Hayes, 1993; Nordin, 2012). These adaptive responses of the bones were 

made possible by the process of continuous remodeling (Seeman & Delmas, 2006), 

which will be discussed later. 

 

2.1.3 Bone Matrix  

Bone matrix mainly composed of Type 1 Collage fibers (2 α1 chain and 1 α 

2 chain), which represents 90-95% of the organic composition of the whole bone 

tissue and non-collagenous in-organic constituents (hydroxyapatite and other salts 

of calcium and phosphate).  The collagen fibers are essential for the bone’s tensile 

strength, and the non-collagenous proteins are essential for the bone’s compressive 

strength. These effects are synergistic. 

 

  2.1.4 Classification of Bones  

Bones can be classified according to the arrangement of collagen into two 

categories; ‘lamellar’ bone and ‘woven’ bone (fibrous bone). Lamellar bone is the 

main type of bone in a mature skeleton. It is composed of an organized collagen 

arrangement that exhibits a lamellar pattern with circular layers of collagen alternating 

longitudinal ones. It is stress oriented, mechanically strong, and exhibits low 

flexibility. In contrast, woven bone is an immature or pathologic bone composed of 

loosely and randomly arranged collagen, it is non-stress oriented, mechanically weak, 

and highly flexible. Woven bone is formed when osteoblasts produce osteoid rapidly 

during the production of fetal bones. In adulthood, the woven bones are produced after 
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a bone fracture or in Paget’s disease. Later these bones are replaced with more resilient 

lamellar bone. 

 

   2.1.4.1 Osteoblast- Bone Formation  

Osteoblasts are the cells responsible for bone formation. They synthesize and 

secrete the organic and inorganic constituents of bone matrix. Osteoblasts function in 

groups along the bone surface, lining on the layer of bone matrix that they are 

secreting. Osteoblasts originate from mesenchymal stem cells (MSC), which have the 

capacity to differentiate into osteoblasts, chondrocytes, muscle, fat, ligament and 

tendon cells (Bianco, Riminucci M., Gronthos, & Robey, 2001). In recent years, much 

progress has been made in understanding the factors that regulate the gene expression 

underlying the induction, proliferation, differentiation, and maturation of osteoblast  

(Jensen, Gopalakrishnan, & Westendorf, 2010).  Recent studies have shown that 

deletion mutations in runt-related transcription factor 2 (Runx2) or osterix genes lead 

to abnormal bone development (Ducy et al., 1997). Toward the end of the matrix 

production, 15% of mature osteoblasts get embedded in the new bone matrix, 

differentiating into osteocytes, while the remaining osteoblasts stay on the bone surface 

and become flat lining cells. 

The process of bone formation is called osteogenesis or ossification, it occurs 

in three subsequent phases: production and maturation of osteoid matrix, followed by 

mineralization of the matrix. In adults, these phases occur at the same rate, 

maintaining a balance between matrix production and mineralization. During 

osteogenesis, clusters of osteoblasts on the bone surface deposit collagen and other 

molecules to form an organic soft matrix referred to as “osteoid”. This is followed by 
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another phase where there is an increase in the mineralization rate to equal that of 

collagen synthesis. In this phase, osteoblasts secrete alkaline phosphatase to create 

sites for the deposition of calcium and phosphate, allowing crystallization. Finally, 

the rate of collagen synthesis decreases, and mineralization continues until the osteoid 

becomes fully mineralized.  

Osteoblasts produce a wide range of growth factors under a variety of stimuli 

including the insulin-like growth factors (IGF) (Canalis, J, Gabbitas, Rydziel, & 

Varghese, 1993), platelet-derived growth factor (PDGF) (Shikada et al., 2005) basic 

fibroblast growth factor (bFGF) (Globus, Plouet J., & Gospodarowicz, 1989), 

transforming growth factor-beta (TGF) (Canalis, J, & Varghese, 1993) and the bone 

morphogenetic proteins (BMP) (Chen, Zhao M., & Mundy, 2004). Osteoblast activity 

is known to be regulated in an autocrine and paracrine manner by a range of growth 

factors, whose receptors are found on osteoblasts for classical hormones such as 

parathyroid hormone, parathyroid hormone-related protein, thyroid hormone (Rizzoli, 

Poser, & Bürgi, 1986), growth hormone (Barnard, Ng Kw., Martin, & Waters, 1991), 

insulin (Levy, Murray, Manolagas, & Olefsky, 1986), progesterone (Wei, Leach Mw., 

Miner, & Demers, 1993), and prolactin (Clement-Lacroix et al., 1999) are located in 

osteoblasts as well. Osteoblastic nuclear steroid hormone receptors are members of 

the nuclear receptor subfamily 3 (NR3), which include receptors for estrogens 

(Eriksen et al., 1988), androgens (Colvard et al., 1989), vitamin D3, (Darwish & 

DeLuca, 1996) and retinoids (Kindmark, H., Johansson, Ljunghall, & Melhus, 1993). 

 

2.1.4.2 Osteocytes 

Osteocytes are the osteoblasts that have been embedded in the osteoid of the 
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bones. The metabolic activity of the osteoblast usually decreases once it is fully 

encased in bone matrix. However, osteoblasts are still capable to produce matrix 

proteins. The osteocytes are rich in microfilaments, which are organized during the 

matrix formation and before the calcification process. In addition, osteocytes form a 

network of thin canaliculi permeating the entire bone matrix. Interestingly, the 

osteocytes’ morphology and functional activity vary according to the cells age. The 

young osteocytes have almost all the structural characteristics as the old osteocyte but 

with decreased cell volume and lower capacity of protein synthesis. The older 

osteocyte (located deep within the calcified bone) is characterized by accumulation of 

glycogen in the cytoplasm. During the process of osteoclastic bone resorption, these 

old osteocytes are eventually phagocytosed and digested (Elmardi, Katchburian Mv., 

& Katchburian, 1990). The exact function of these complex osteocytes network is still 

vague. However, it is likely that these osteocytes respond to bone tissue strain and 

stimulate bone remodeling activity by recruiting the osteoclasts to sites where 

remodeling of the bone is required (Lanyon, 1993). 

 

2.1.4.3 Osteoclast–Bone Resorption 

The osteoclast is giant multinucleated cells that reach up to 100 µm in diameter. They 

are derived from the hematopoietic cells of the mononuclear lineage (macrophage 

lineage). Mature monocytes and macrophages have the ability to differentiate 

into osteoclasts if the suitable microenvironment is available and prepared by bone 

marrow-derived stromal cells (Udagawa et al., 1990). Osteoclasts are the mediators of 

the continuous destruction of the bone tissue in response to different stimuli such as 

structural stress or the body requirement of calcium.  They occupy small depressions 
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known as Howship lacunae on the surface of the bone. Osteoclasts are rich with Golgi 

apparatus, mitochondria, and transport vesicles which are loaded with lysosomal 

enzymes. These organelles are present in deep foldings of the osteoclast’s plasma 

membrane in the area that is close to the bone matrix which is known by ruffled border 

and the surrounding zone of attachment which is known as the sealing zone. Lysosomal 

enzymes including tartrate-resistant acid phosphatase and cathepsin K are synthesized 

by the osteoclast. Then secreted via the ruffled border into the bone-resorbing 

compartment (Stenbeck, 2002). These lysosomal enzymes, mainly the acid phosphatase 

have the ability to dissolve the organic collagen and the inorganic minerals 

(calcium and phosphorus) of the bone. First of all, the mineralized bones are broken 

into fragments. Then, the osteoclast engulfs the fragments and digests them within 

cytoplasmic vacuoles. The liberated Calcium and phosphorus from the breakdown of 

the mineralized bone are released into the bloodstream. On the other hand, the 

unmineralized bones (osteoid) are protected from the osteoclastic resorption. This 

process of adhesion of the osteoclast with the bone matrix surface involves the binding 

of integrins expressed in osteoclasts to specific amino acid sequences on the surface of 

bone matrix (Davies et al., 1989). After osteoclast adhesion is complete, the binding of 

avb3 integrin activates the cytoskeletal reorganization inside the osteoclast (Reinholt, 

Hultenby K Fau - Oldberg, Oldberg A Fau - Heinegard, & Heinegard, 1990). This 

attachment usually occurs via structures known as podosomes, which are adhesive 

structures present at the ventral surface monocytic myeloid lineage cells. Through 

podosomes continual assembly and disassembly, they allow the movement of the 

osteoclasts across the bone surface during which bone resorption proceeds. Integrin 
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signaling and subsequent podosome formation are dependent on a number of adhesion 

kinases including the proto-oncogene src (Destaing et al., 2008).  

Osteoclasts resorb the bone by acidification of the bone matrix. The first process during 

bone matrix resorption is the mobilization of the hydroxyapatite crystals, encapsulated 

within the sealing zone, by digestion of their link to the collagen fibers. The remaining 

collagen fibers are digested by proteases (cathepsins or collagenases) and the residues 

from this digestion process will either be internalized or transported across the cell to 

be released at the basolateral domain. The function of osteoclast is regulated by 

cytokines that act locally and by the systemic hormones. Osteoclastic receptors for 

calcitonin (Warshawsky H., Goltzman, Rouleau, & Bergeron, 1980), androgens 

(Mizuno et al., 1994),thyroid hormone (Abu, Bord S., Horner, Chatterjee, & Compston, 

1997), insulin (Thomas et al., 1998),  PTH (Teti, Rizzoli R Fau - Zambonin Zallone, & 

Zambonin Zallone, 1991), IGF-1 (Hou, Sato T., Hofstetter, & Foged, 1997), interleukin 

(IL)-1 (Xu et al., 1996), CSF-1, (Hofstetter et al., 1992) and PDGF (Z. Zhang, Chen J 

Fau - Jin, & Jin, 1998) have been demonstrated. 

 

2.1.5 Bone Remodeling 

Bone remodeling is a complex ongoing process by which old bones are 

continuously replaced by new tissue to repair microdamage and maintain bone 

strength. In other words, bone is being turned over, allowing the maintenance of the 

shape, quality, and size of the skeleton. The process of bone remodeling requires the 

interaction between different cell phenotypes and is regulated by a variety of 

biochemical and mechanical factors. It relies on the correct balance between bone 

resorption and bone formation. In the homeostatic equilibrium condition, bone 
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resorption and formation are balanced so that the old bones are continuously replaced 

by new tissue, adapting to mechanical load and strain. In 1990 Frost defined this 

phenomenon as bone remodeling (Frost, 1990).  

The remodeling cycle is composed of five sequential phases: (1) activation, (2) 

resorption, (3) reversal and (4) formation and finally (5) quiescence. The first phase 

(activation) starts when pre-osteoclasts are attracted to the remodeling sites and fuse 

to form the multinucleated osteoclasts (Matsubara et al., 2012). Then, the second 

phase (resorption) begins when osteoclasts dig out a cavity, called a resorption pit, in 

spongy bone or burrow a tunnel in compact bone and calcium is released into the 

bloodstream to be used by different body organs. After the completion of osteoclastic 

resorption, there is a reversal phase when the mesenchymal stem cells, pre-cursors to 

osteoblasts, appear along the bone surface where they proliferate and differentiate into 

pre-osteoblast and prepare the bone surface for the new osteoblasts to begin the fourth 

phase, which is bone formation and provide signals for pre-osteoblast to mature 

release osteoid at the site, forming a new soft nonmineralized matrix (Delaisse, 2014). 

The new matrix is then mineralized with calcium and phosphorous. When the final 

phase is completed, the bone surface will be covered with a flattened cell lining and a 

prolonged resting period will begin until the next remodeling cycle is initiated 

(Quiescence phase). The phases of the remodeling cycle occur occurring over the 

course of 120–200 days in cortical and trabecular bone, respectively (Agerbaek, 

Eriksen Ef., Kragstrup, Mosekilde, & Melsen, 1991). 
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Figure 1 Representative figure of bone remodeling 
Adapted from	“Bone	Health	and	Osteoporosis:	A Report of the Surgeon 
General,”	by	the	U.S.	Department	of	Health	and	Human	Services,	2004.	

 
 

2.2 Osteoporosis  

2.2.1 Definition of Osteoporosis  

 Osteoporosis is one of the most common diseases that affect human bones. It is 

mainly characterized by decreased bone mineral density (BMD) and significantly 

increased predisposition to bone fracture. In other words, osteoporosis is the state of 

increased risk of bone fracture after minimal trauma due to decreased bone mineral 

density (Bonnick, 2010). The symptoms and pain associated with osteoporosis appear 

only when a fracture has occurred. If the treatment courses are not initiated, 

osteoporosis develops until there is bone breakage basically at the hip, spine, or wrist. 

Hip fractures interfere severely with a person’s mobility and independence, while 
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vertebral fractures lead to height loss, stooped posture, and chronic pain (National 

Institutes of Health, 2017; Sözen et al., 2017).  

 

 

 

 

Figure 2 Normal and osteoporotic bones. 

 
 

Osteoporosis affects the mechanical structural properties of bone, resulting in 

cortical thinning and trabecular bone loss. The structure of bone tissue is well-

documented in the research literature; however, the bone remodeling process and its 

molecular mechanism continues to evolve. 

 

2.2.2 Classification of Osteoporosis  

 Osteoporosis has been classified into two categories; primary and secondary 

osteoporosis. Primary osteoporosis is the most common form of diseases. It can 

further classify into two types; postmenopausal osteoporosis, which is type 1 and 

senile osteoporosis, which is type 2. On the other hand, secondary osteoporosis is 

characterized mainly by the clear definable etiology. Primary type 1 osteoporosis, 
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post-menopausal osteoporosis, develop in women when the amount of estrogen and 

androgen in the body decreases, which leads to an increase in the bone turnover, with 

resorption of bone exceeding bone formation and most importantly the loss of 

trabecular bone predominant compared with cortical bone. On the other hand, primary 

type 2 osteoporosis represents the gradual age-related bone loss found in both sexes 

caused by systemic senescence. It is induced by the loss of stem-cell precursors, with 

a predominant loss of cortical bone (Riggs Bl Fau. & Melton, 1983).  

Human bone mass peak at the age of 30 for both sexes. Men and women lose bone at 

a rate of approximately 0.3% to 0.5% per year, respectively (Dobbs, Buckwalter, & 

Saltzman, 1999). After menopause, bone loss in female accelerates further at a rate of 

2% to 3% per year due to estrogen deficiency up to 6 years after menopause (Dobbs 

et al., 1999). Due to the fact that age-related bone loss is a natural phenomenon in 

humans, any limitations in the individual's ability to maximize peak adult bone mass 

leads to an increased risk of developing osteoporosis later in life. In addition, since 

there are no safe and effective methods to rebuild and repair the osteoporotic skeleton, 

developing prevention strategies is crucial (Cosman et al., 2014; Riggs BL. & Melton 

LJ., 1992). Therefore, a knowledge of preventive approaches is essential, including 

the efficacy and safety of estrogen and progestin therapy, intake of calcium and 

vitamin D, exercise, bisphosphonates (Cosman et al., 2014).  

 

2.2.3 Prevalence of osteoporosis 

Osteoporosis is a chronic disease that has escalated to what is considered a 

major public health concern in developed countries. Approximately 200 million 

people suffer from osteoporosis and cause approximately 8.9 million fractures 
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annually resulting in an osteoporotic fracture every 3 seconds (Hernlund et al., 2013). 

These fractures occur mainly at the hip, vertebrae, and distal forearm (Minisola, 

Cipriani, Occhiuto, & Pepe, 2017) and are associated with significant morbidity, 

mortality, and reduced quality of life, attributed not only to the fracture itself but also 

to the high prevalence of comorbidities in this population of patients (Hernlund et al., 

2013; Minisola et al., 2017). Between 1990 and 2000, osteoporosis caused a 25% 

worldwide increment in hip fractures. By 2050, the worldwide incidence of hip 

fracture in men is projected to increase by 310% and 240% in women, compared to 

rates in 1990 (Gullberg, Johnell O., & Kanis, 1997). The peak for hip or other fracture 

types occurs for both women and men aged 75-79 years and 50-59 years, respectively 

(Johnell & Kanis, 2006). Vertebral fracture due to osteoporosis is very common as 

well with one occurring every 22 seconds worldwide in men and women over age 50 

(Johnell & Kanis, 2006). 

Even though osteoporosis is a devastating disease, it remains a neglected health 

priority in the Arab world (Sweileh, Al-Jabi, Zyoud, Sawalha, & Ghanim, 2014). A 

study published on the Saudi population showed that the prevalence of osteoporosis 

was 34% among 5160 healthy women aged 50–79. In addition, they showed that the 

prevalence of osteopenia and osteoporosis among men 46.3% and 30.7%, respectively 

(Sadat-Ali, Al-Habdan, Al-Turki, & Azam, 2012). Another study was conducted in 

Jordon reported that the prevalence of osteoporosis among post-menopausal women 

was 12.3% (Shilbayeh, 2003). Only one study was conducted in Qatar on the prevalence 

of osteoporosis and they reported that the prevalence of osteoporosis among post-

menopausal women is 12.3% (Bener, Hammoudeh, & Zirie, 2007). According to the 
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Qatar Biobank report, osteopenia represented 66% of the newly diagnosed diseases in 

their participants and osteoporosis represented 5% (Biobank, 2017).  

 The prevalence of osteoporosis, as determined by bone mineral density 

measurements by Dual-energy X-ray Absorptiometry (DXA), has increased massively 

with age. It is thought to be an unavoidable consequence of aging in women, however, 

extensive research in the past 2 decades reported that it is a disease that affects both 

women and men. A study conducted in Qatar showed that BMD values differ widely 

among the Gulf States, with Qatari women having low BMD values compared to 

Kuwaitis, but higher BMD values compared to Lebanese and similar BMD values 

compared to Saudis. However, femur BMD values were higher in Qatari women in the 

age group 40-59 years compared to Kuwaitis, Saudis, and Lebanese, but lower in the 

age group 60-69 years (Hammoudeh, Al-Khayarin, Zirie, & Bener, 2005). 

Osteoporosis represents a major concern of the health care systems because of 

its growing economic burden (Kuo & Chen, 2017). In the United States, costs related 

to osteoporosis fractures were estimated at $13.8 billion (O'Neill & Roy, 2005).  

2.2.4 Clinical Consequences and Economic Burden 

The fractures that occur as complication of the sever weakening of the bones is 

the clinical significance of osteoporosis. These fractures may occur not only from a 

fall from standing height but also from simple movements such as normal lifting and 

bending. It is estimated that at least 1 in 3 females and 1 in 5 males will experience an 

osteoporotic fracture during their remaining lifetime (Kanis et al., 2000; Melton, 

Atkinson Ej Fau ., O’Connor, O'Fallon, & Riggs, 1998; Melton, Chrischilles Ea Fau., 
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Cooper, Lane, & Riggs, 1992). About 80% of the age-related fractures in elder people 

are due to osteoporosis, yet, less than 30% get diagnosed and treated (Papaioannou et 

al., 2008). Osteoporosis takes a huge personal and economic toll. In Europe, the 

disability due to osteoporosis is greater than that caused by cancers (with the exception 

of lung cancer) and is comparable or greater than that lost to a variety of chronic 

noncommunicable diseases, such as rheumatoid arthritis, asthma and high blood 

pressure related heart diseases (Johnell & Kanis, 2006). Hip fractures are invariably 

associated with chronic pain, reduced mobility, disability, and an increasing degree of 

dependence (Keene, Parker, & Pryor, 1993). After sustaining a hip fracture 10-20% 

of formerly community-dwelling patients require long term nursing care (Autier et al., 

2000; Cree et al., 2000; Kiebzak, Perser, Ambrose Cg., & Heggeness, 2002) with the 

rate of nursing home admission rising with age (Cree et al., 2000; Kiebzak et al., 

2002). Similar to hip fractures, vertebral fractures can lead to back pain, loss of height, 

deformity, immobility, increased number of bed days, and even reduced pulmonary 

function (Nevitt et al., 1998). Their impact on quality of life can be profound as a 

result of the loss of self-esteem, distorted body image and depression (Gold, 2001; 

Robbins, Hirsch C., Whitmer R., Cauley J., & Harris, 2001; Tosteson et al., 2001). 

Vertebral fractures also significantly impact activities of daily living (Adachi et al., 

2002; Hall, Criddle Ra., Comito Tl., & Prince, 1999) 

 The economic consequences of the morbidity and mortality rates due to 

osteoporotic fractures are shocking. It is estimated that the annual cost for 

osteoporosis treatment including; care costs, prescription of drugs, outpatient care, 

and indirect costs, to the Canadian health care system is about 2.3 billion dollars per 

year. Indeed, these costs rise when taking into consideration patients living in long 
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term care, as it rises to around 3.9 billion dollars per year (Tarride et al., 2012). A 

longitudinal study done in Canada evaluated the individual one year societal cost for 

a patients over 50 years suffering from hip fracture who were admitted to acute care 

facility to be about $21,285 after hospitalization, and $44,156 if the patient was 

institutionalized (Wiktorowicz, Goeree R Fau - Papaioannou, Papaioannou A Fau - 

Adachi, Adachi Jd Fau - Papadimitropoulos, & Papadimitropoulos, 2001).   The 

economic burden of osteoporosis worldwide is similar to that seen in Canada. In the 

US, osteoporosis- related fractures are responsible for an estimate of 19 billion dollars, 

with men accounting for 25% of the total burden (National Osteoporosis Foundation., 

2012). Researchers predict that the health care costs of osteoporosis and its fractures 

will grow to more than 48% by 2025 (Burge et al., 2005).  

  

2.2.5 Diagnosis of Osteoporosis 
 2.2.5.1 Dual Energy X-ray Absorptiometry  

DXA is an X-ray imaging technique, that is used mainly to derive the mass of 

one material in the presence of another through knowledge of their unique X-ray 

attenuation at different energies. It is a mean of measuring BMD. It is a two X-ray 

beam, with different levels of energy, aimed at the patient bone. By subtracting the 

absorption of soft tissues out, the BMD can be measured from the absorption of each 

beam. The DXA systems were first introduced in the late 1980s (Kelly, Dm., & Neer, 

1989).  

DXA scan is an extension of dual energy photon absorptiometry (DPA), which 

is an earlier imaging technique. However, DXA differs from the DPA technique as 

DPA uses a monochromatic emission from a radioisotope whereas DXA uses 
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polychromatic X-ray beams with different energies. DXA’s main application is to 

measure BMD, which is essential for assessing the fracture risk and most importantly 

in diagnosing osteoporosis. For osteoporosis diagnosis, the lumbar spine, proximal hip 

and, sometimes, the distal forearm are scanned. The whole body of patients can be 

scanned to measure the total bone mass (Laskey, 1996). DXA scan is regarded as the 

gold standard for quantifying BMD in vivo and for diagnosing osteoporosis (Stuart K. 

Kim, 2018).   

 

2.2.5.2 Measurements from DXA scans  

  DXA scan measures the content of minerals in the bone (g) representing the 

total mass of an area in the bones scanned. The value for BMD (g/ cm2) is derived 

when the content of minerals in the bones (g) is divided by the area measured. In this 

context, DXA scan does not measure the size of the bone or assess it is quality (e.g. 

microarchitecture, bone turnover) that are also main elements of bone strength.  

The World Health Organization (WHO) has defined the criteria for diagnosing 

osteoporosis and for assessing osteoporotic fracture risk using a DXA scan. A BMD 

value that is more than 2.5 SDs below the optimal mean for healthy young individuals 

of the same race and gender defines an individual as having osteoporosis (T-score ≤ -

2.5). On the other hand, osteopenia was defined by WHO as a BMD t score that ranges 

between 1.0 and 2.5 SDs below the optimal mean (-2.5 < T-score < -1.0). 

 

2.2.6 Osteoporosis Risk Factors  

 Osteoporotic risk factors are genetic, nutritional, hormonal, and lifestyle.  

win and family studies have shown that genetic factors play an important role in 
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regulating bone mineral density and other determinants of osteoporotic fracture risk, 

such as skeletal geometry and bone turnover. Genetic risk factors are more significant 

for osteoporosis than all the others combined—nutritional, hormonal, lifestyle and 

environmental factors (Cohen & Roe, 2000). The clinical definition of osteoporosis 

takes account of BMD, a highly heritable trait. It has been estimated in cohort studies 

that bone density has an estimated 0.78  heritability at the lumbar spine, and 0.84 at 

the femoral neck (Arden, Baker J., Hogg, Baan, & Spector, 1996). These population-

based studies have demonstrated that having a first degree relative with a hip fracture 

predicts future hip fractures (Cummings et al., 1995).  
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Figure 3 Risk Factors of osteoperotic fractures. (retrieved from 

https://courses.washington.edu/bonephys/oprisk.html). 
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Table 1 Risk Factors of Osteoporosis  

 
Age Related  1. Each decade beyond the fourth decade is 1.5-fold risk 

2. Reduction in absorption of calcium  
3. Rise in parathyroid hormone levels 
4. Decline in calcium  

Genetic  1. Women more than men  
2. Familial prevalence  
3. High concordance in monozygotic twins  

Ethnicity  1. White, Asian, Latino and Black  
Nutritional  1. Low calcium intake 

2. Vitamin D deficiency  
3. High alcohol 
4. High caffeine  
5. High sodium  
6. High animal protein  

Lifestyle 1. Cigarette use 
2. Low physical activity  

Endocrine  1. Menopausal age 
2. Obesity  
3. Exercise-induced amenorrhea  

Iatrogenic 
factors  

1. Glucocorticoids  
2. Cyclosporine 
3. Anticonvulsant  
4. Thyroxin 
5. Aluminum  
6. Lithium  
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2.3 Genome-Wide Association Studies (GWAS) 

2.3.1 GWAS Overview 

 Genome-wide association study (GWAS) is an observational study of a 

genome-wide set used to detect associations between genetic variants and phenotypes 

in a sample from populations. The main goal of these observational studies is to aid in 

understanding the etiology and biology of diseases, which will lead to a better 

understanding and eventually prevention or better treatment.  The fundamental 

principle underlying Genome-wide Association Studies (GWAS) is that it is an agnostic 

scan of germline variants across DNA samples from a sufficiently large number of case 

and control subjects using genome-wide SNP microarrays. The primary aim is to 

discover genomic regions that harbor genetic variation that could influence 

susceptibility to common complex diseases such as Osteoporosis.  The path between 

GWAS results and the biology of the disease is not a straightforward path, because the 

association between a single nucleotide polymorphism (SNP) at a genomic locus and a 

clinical phenotype is not directly informative with respect to the target gene or the 

mechanism whereby the variant is associated with phenotypic differences. However, 

recent discoveries of new data reports, new molecular technologies, and new statistical 

analysis methodologies have provided the opportunities to bridge our gap in knowledge 

from sequence to consequence. In addition, GWASs have also been very successful in 

helping scientists to implement better definition of the relative role of genes and the 

environment in risk of developing certain diseases, which is helpful in risk prediction, 

which was very helpful in the development and investigating natural selection and 

population phenotypical differences.  
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2.3.4 Single Nucleotide Polymorphism   

Single nucleotides polymorphisms, frequently known as SNPs, re the most 

common genetic variant in among a population. In other words, SNPs are single base-

pair changes that occur in a high frequency in the genome (Abecasis et al., 2010). 

They are typically used as genomic markers; however, most of SNPs do not have a 

significant impact on the human physiological systems. There are usually only two 

alleles at a SNP locus. The term SNPs, which are common genetic variants, lie in 

complete contrast to rare genetic polymorphisms associated with rare genetic 

disorders, such as cystic fibrosis (Jackson, Marks, May, & Wilson, 2018). Such 

genetic disorders are caused by rare genetic variants that usually result in a deleterious 

alteration tin the protein function, thus, causing a disease. Variants that occur at low 

frequency are known as mutation.  

 

2.3.5   common Variation  

2.3.5.1 The Human Haplotype Map Project 

Up to date, researchers have identified more than a thousand genes that 

contribute to rare, heritable genetic disorders that follow ‘Mendelian’ heritability.  

However, challenges remain in studying common disorders as they are a result of 

combined DNA variants interacting with environmental factors. To investigate the 

hypothesis of common variant lead to common disease for a specific phenotype, a 

systematic approach is required to interrogate the huge amount of common variation 

in the human whole genome. First of all, the location and the density of a common 

SNPs is required to identifying the genomic regions and individual sites that must be 
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tested by the genetic studies. Secondly, the difference in the genetic variance between 

different populations must be cataloged to ease the study of specific phenotypes in 

different populations with the accurate design The International HapMap Project was 

implanted to help researchers in identify common genetic variation across the genome 

that might help in identifying genetic risk factors for common diseases (International 

HapMap, 2005).  

Up to date, the International HapMap Project has successfully discovered and 

cataloged SNPs in the European populations, the Yoruba population (African origin), 

Han Chinese individuals from Beijing, and Japanese individuals from Tokyo (Olivier, 

2003; Ritchie et al., 2010) The project has since been expanded to include 22 human 

populations. In addition, the HapMap genotype data helped in the examination 

of linkage disequilibrium. 

 
 

2.3.5.2 linkage disequilibrium 

Linkage disequilibrium (LD) is the nonrandom linkage of nearby variants such 

as alleles at different loci in a specific population. This non-random association in a 

population is a sensitive indicator of the population genetic forces that structure their 

genome (Slatkin, 2008). Linkage disequilibrium term was first introduced in 1960 

(Lewontin & Kojima, 1960). In the 1980s, LD attracted wide attention and the 

importance of LD for assisting in gene mapping became widely evident. LD 

throughout our whole genome represent the population’s different history, the pattern 

of geographic subdivision and most importantly, the breeding system in the 

population (Slatkin, 2008). In this context, it reflects the population’s history of 

natural selection, mutation and other factors that impacted the evolution of gene-
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frequency. In addition, linkage disequilibrium can be influenced by many contributing 

factors, including natural selection, genetic recombination rate, mutation rate, the 

system of mating in the population, genetic drift, the structure of the population, and 

finally, genetic linkage (Barton, 2010).  

The recent systematic studies of the population’s common genetic variation 

including GWAS are aided by the fact that individuals who carry a particular SNP at 

a particular locus often carry a specific SNP at another nearby locus, which can be 

predicted (Stadler et al., 2010). A particular combination of alleles at different loci 

that are inherited as a block along a chromosome is known as a haplotype 

(International HapMap, 2005). 

This linkage of common variants along a chromosome that is inherited together 

came to existence due to the shared ancestry of the chromosomes. When a new variant 

arises through mutation; SNP, insertion or deletion, it initially occurs in a unique 

chromosome, which is marked by a distinct combination of genetic variants. 

Subsequently, the natural process of recombination and mutations during the division 

process act to erode this mutation, however, the process is very slow. This association 

between the mutations and the haplotypes have served as a tool for human genetic 

research by finding its association to a haplotype and then identifying the causal 

variant of the phenotype. The association studies were first conducted on  

the HLA region identify causal genes for certain Mendelian diseases such as cystic 

fibrosis  (Kerem et al., 1989) and diastrophic dysplasia (Hastbacka et al., 1992)) and 

complex disorders such macular degeneration associated with age (Edwards et al., 

2005; Haines et al., 2005; Klein et al., 2005).  
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Figure 4 Representative figure demonstrating linkage disequilibrium.  

Linkage occur when the two markers remain linked together after meiosis instead of being separated by 

recombination (red line). Retrieved from (Bush & Moore, 2012). 

 
 

2.3.5.3 Indirect Association 

 Two possible outcomes will be present from the existence of Linkage 

Disequilibrium in a genetic association study. The first outcome is that the SNP that 

influences the biological mechanism and ultimately leads to the phenotype under 

investigation is genotyped in the GWAS directly (direct association). In this case, the 

directly genotyped SNP is known as a functional SNP. The second possible outcome is 

that the functional SNP was not directly typed, however, a tag SNP which is in a high 

LD haplotype with the functional SNP is typed (indirect association). A tag SNP is a 

representative SNP in a region of the genome with high linkage disequilibrium that 

represents a group of SNPs. 
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Figure 5 Indirect association testing in GWAS. 

GWAS investigates the "indirect" association between the typed marker locus on the array and the 

disease phenotype. The unobserved causal locus, which is directly associated disease phenotype, is 

directly associated with the typed marker locus. 

 

 

2.3.7 Genotyping Technologies  

 GWA studies are now feasible by the availability of microarrays for assaying 

millions of SNPs at a reasonable cost. Two primary microarrays platforms have been 

used by most of the GWA studies, which are Illumina (San Diego, CA) and Affymetrix 

(Santa Clara, CA). Both microarrays offer different approaches for measuring SNP 

variations. To elaborate, the Affymetrix platform microarray prints short DNA 

sequences as a spot on the chip that recognizes a specific SNP allele in which the alleles 

are detected by differential hybridization of the sample DNA. On the other hand, the 

Illumina microarrays platform uses a bead-based technology with slightly longer DNA 

sequences to detect alleles. The Illumina chips offer better specificity; however, it is 

more expensive to make. 

Another important consideration aside from which platform should be used for the 

GWAS, is the SNPs that each platform has selected for assay. This is a very important 
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aspect that should be kept in mind depending on which specific human population will 

be studied.  

 
2.3.5 Study Designs  

2.3.5.1 Case-Control design  

The case-control studies are the classical epidemiological designs used. Basically, it 

is composed of subjects who have the disease and investigate if there are any specific 

characteristics of these patients that differ from those who do not have the disease. In 

GWAS of case-control design, scientists compare the frequency of alleles or 

genotypes between the cases and controls. A difference in the frequency of an allele 

or genotype of the SNP under investigation between the cases and control groups 

indicates that the genetic marker may increase the risk of the disease or likelihood of 

the trait. Haplotypes can also show an association with a specific trait. One of the 

earliest successes in the genetic field was identifying a single base nucleotide mutation 

in the non-coding region of the APOC3 gene (apolipoprotein C3 gene) which is found 

to be associated with higher risks of hypertriglyceridemia and atherosclerosis (Rees 

A., Shoulders, Stocks, Galton, & Baralle, 1983) using a case-control design. 

The major drawback for case-control study design is that genotype and haplotype 

frequencies vary between ethnic or geographic populations. If the recruited case and 

negative control populations were not well matched and counted for different 

ethnicities or geographic origin, then the false positive association can occur because 

of the confounding effects of population stratification. Another major limitation of 

this design is the lack of well-defined case and control groups especially in complex 

diseases.  
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2.3.5.2 Family-based design  

The family-based association study designs main aim was to avoid any potential 

confounding effects that could result from population stratification. This study design 

recruits the parents or an unaffected sibling as controls for the case. Two tests are most 

commonly used by this study design, which are the transmission disequilibrium test 

(TDT) and the haploid-relative-risk (HRR). Both of these tests measure the 

association of a specific genetic marker in the affected families by transmission from 

parent to offspring. If an allele increases the risk of having a disease, then that allele 

is expected to be transmitted from parent to offspring more often in populations with 

the disease.  

 

2.3.5.3 Quantitative trait association  

From statistician prospective, GWA studies with quantitative phenotype are 

preferred because they can easily improve the power of genetic effect detection, and 

often have a more interpretable findings in contrast to case-control studies. For some 

quantitative traits, genomic risk SNPs have already been identified. As an example, 

the high-density and the low-density lipoproteins levels are very strong markers for 

cardiac disease. Thus, genetic studies of cardiac disease can be conducted by 

investigating these levels as a “quantitative trait” (Bush & Moore, 2012). The genetic 

variants that influence the levels of these markers will have a clear interpretation. 

These quantitative traits being easily measurable have made GWAS of blood lipids 

easily conducted in many cohort studies from different populations. In addition, GWA 

studies of quantitative traits could be combined to produce a massive meta-analysis 
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study that is extremely well-powered as done by (Teslovich et al., 2010). However, 

some diseases don’t have a very well-established quantitative measure. Here is when 

the individuals can be classified as either “disease” or “healthy” which is a binary 

categorical method. Though, you have to consider the vast difference in measurement 

error between different studies associated with classifying individuals as either a 

“case” or a “control” versus precisely measuring a quantitative trait. However, 

classifying the individuals as cases or controls doesn’t necessarily means that the 

GWAS will be unsuccessful. For instance, multiple sclerosis is a complex clinical 

phenotype that is often diagnosed over a long period of time by ruling out other 

possible conditions. GWAS of multiple sclerosis has been enormously successful, 

implicating more than 10 new genes for the disorder (Habek, Brinar Vv., & 

Borovecki, 2010). 

 

2.3.6 Quality Control   

2.3.6.1 Sex inconsistencies in GWAS sample and chromosomal anomalies 

One of the most important steps that must be implemented in any GWA study 

as a Quality control is to check any potential mismatch in the sample identification, 

which is typically a result of mishandling errors (S. Turner et al., 2011).  The easiest 

method to identify any sample handling disputes is to check the reported gender of 

each participant against the predicted gender by the genetic data. The -- check-sex 

command in PLINK implement the heterozygosity rates of the X-chromosome to 

determine the sex. Then, the software identifies participants for whom the sex 

recorded in the ped-file is not compatible with the predicted sex based on genetic data. 

If there are any discrepancies in the data, the available questionnaires should be 
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reviewed to make a determination whether there was a sample handling error. In 

addition, by checking the X chromosome heterozygosity rates, any sex chromosome 

anomalies such as Kleinfelter syndrome, can be identified (S. Turner et al., 2011).  
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Figure 6 Representative table showing an example of output from command –check sex 

using PLINK. The Table is retrieved from (Stephen Turner et al., 2011). 
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2.3.6.2 Sample Relatedness   

Another method to examine the sample identity and the pedigree identity 

simultaneously is by comparing genomic data with the self-reported relationships 

reported in the questionnaires if available. Using the dense marker genomic data, it is 

easy to compute kinship estimates and identify related individuals in the study using 

the command “ --genome” in PLINK. In addition to reporting the kinship between the 

participants, this step is essential for calculating the proportion of loci where two 

individuals share alleles that are identical by descent (IBD). In this context, 

individuals who share two alleles that are IBD at every locus in the DNA are either 

monozygotic twins or one sample was just processed twice. Thus, the individuals who 

share zero alleles that are IBD at every locus are unrelated. On the other hand, the 

individuals who share one allele that is IBD at every locus are parent-child samples. 

In general, siblings can share zero, one, and two alleles. Using the data of kinship, the 

proportion of loci of individuals who share one allele of IBD can be plotted against 

the proportion of loci sharing zero alleles IBD (Figure 7). Furthermore, discovering 

the relatedness in GWAS sample is essential not only for discovering any mishandling 

errors but to reveals any cryptic relatedness that may be present. As shown in figure 

7, individuals who were unrelated represented by the black points or distantly related 

represented by the blue points line up along the diagonal line in the plot. Individuals 

along this diagonal line represent up to fifth degree kinship relation. Thus, if those 

individuals’ samples were treated as independent samples in any further analyses in 

the GWAS, it would result in increased type I and II errors. In this case, mixed model 

regression analytical method (Aulchenko, de Koning, & Haley, 2007) must be 

implemented instead of simple linear or logistic regression. 
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Figure 7 Quality Control: Sample Relatdness Plot.  

Representative figure of individuals by their degree of relatedness: the proportion of loci of individuals 

who share one allele of IBD (Z1) can be plotted against the proportion of loci sharing zero alleles IBD 

(Z0). The figure is retrieved from (Stephen Turner et al., 2011). 

 

 

2.3.6.3 Covariate Adjustment  

Statistical tests should be implemented to adjust and account for factors that are 

known to influence the trait under investigation, such as sex, age, study site, and 
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known clinical covariates (S. Turner et al., 2011). Covariate adjustment is very critical 

to reduces any spurious associations that results due to any sampling artifacts or biases 

in study design. However, the covariate adjustment comes at the price of using 

additional degrees of freedom which may have a negative impact on the statistical 

power of our results. One of the most important covariates that should be considered 

in a GWAS is population stratification discussed in section 2.3.6.4.  

 

2.3.6.4 Population Substructure  

Population stratification is the presence of systematic differences in the allele 

frequency between subpopulation groups in the population usually due to different 

ancestral origins (S. Turner et al., 2011). Population stratification is the prime concern 

of researchers carrying out association studies(Hellwege et al., 2017). Normally, there 

are known differences between different ethnic groups in phenotype prevalence, 

which lead to allele frequencies being highly variable across human subpopulations, 

meaning that in a sample with multiple ethnicities, ethnic-specific SNPs will likely be 

associated to the trait due to population stratification. Failure to control the population 

stratification in GWA study may result in confounding and spurious apparent 

associations, causing a study to fail for lack of significant results or wasting of 

resources following false positive signals (Cardon & Palmer, 2003).  

Different statistical tools have been developed and implemented into GWAS 

software to help in detecting population stratification in the GWAS sample and to 

adjust for it. The genomic control (Devlin & Roeder, 1999; Reich & Goldstein, 2001) 

helps in controlling the population stratification by estimating an inflation factor. 

After that, the software helps in adjusting all of the test statistical results downward 
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by this factor. To account for population stratification, the ancestry of each sample in 

the dataset is measured using one of two software, either STRUCTURE (Price, 

Patterson Nj., et al., 2006) or  EIGENSTRAT (Hochberg & Benjamini, 1990) methods 

that compare genome-wide allele frequencies to those of HapMap ethnic groups. To 

ease the process of quality control of GWAS, another method has been developed to 

adjust for the population structure with the large sample size and thousands of SNPs. 

Eigenstrat analysis (Price, Patterson, et al., 2006) uses the Principal Components 

Analysis to specifically detect and adjust for population stratification in large sample 

sizes used in GWAS in a computationally effective approach. Researchers preferred 

this method over the stratified analysis technique as the combined sample often yields 

more powerful statistical tests, even after adjusting for significant eigenvectors (F. 

Zhang, Wang, & Deng, 2008). Eigensoft is available open-source found online for 

free. The software analysis will result in the computation of 10 principal components. 

If any of these eigenvectors are significantly associated with the phenotype under 

investigation, these eigenvectors should be adjusted to correct for any bias due to 

population stratification (S. Turner et al., 2011). 

 

2.3.6.5 The efficiency of genotyping / call rate 

The	call	rate	or	genotyping	efficacy	is	an	indicator	of	the	quality	of	markers	

used.	The	falling	of	a	large	number	of	SNP	assays	in	an	individual	DNA	sample	is	

an	 indicator	of	 poor-quality	DNA	 that	 could	 lead	 to	 sporous	genotype	 calling.	

These	 samples	 should	 be	 excluded	 from	 further	 analysis.	 The	 recommended	

threshold	for	genotyping	call	rate	is	98-99	%	(S.	Turner	et	al.,	2011).		However,	
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the	threshold	should	be	applied	based	on	the	balance	of	minimizing	the	number	

of	 samples	 excluded	 and	 maximizing	 the	 efficacy	 of	 genotyping.		 Figure	 8	

represents	the	proportion	of	samples	(red	and	blue	lines)	or	markers	(SNPs)	by	

(green	line)	remaining	after	determining	the	different	threshold.	Checking	the	

genotyping	 efficiency	 can	 be	 done	 using	 the	 command	 “	 --missing”	 in	 PLINK,	

which	in	turn	generate	a	file	showing	the	missingness	rate	for	each	individual,	

which	Is	basically	the	proportion	of	SNPs	failing	for	each	individual	in	the	study.	

The	 poor	 quality	 SNPs	 are	 removed	 based	 on	 call	 rate	 threshold	 using	 the	

command	“	–geno”	,	followed	by	a	threshold	for	a	lower	limit	of	missingness	(Ex.	

“--geno	0.01	“would	remove	all	SNPs	showing	more	than	1%	missing).		After	that,	

the	 samples	 that	 are	 below	 the	 applied	 threshold	 can	 be	 excluded	 from	 any	

downstream	analyses	using	 the	command	“	–mind”	 in	PLINK	(S.	Turner	et	al.,	

2011).		
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Figure 8 Representative figure of adjusting the call rate efficacy threshold.  

The green line represents the SNPs remaining after excluding SNPs below the call rate efficacy 

threshold. The blue line represents the number of samples remaining after exclusion, whereas the red 

line represents the number of samples that remains after applying the 99% call rate threshold to exclude 

poor quality markers. The figure is retrieved from (S. Turner et al., 2011).  
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2.3.6.6 Minor Allele Frequency (MAF)  

One of the most important steps in Quality control and cleaning the GWAS data 

is to filter SNPs based on the MAF due to the fact that the statistical power is 

extremely low for rare SNPs. Thus, it is recommended to remove any extremely rare 

SNPs. Similar to the call rate, the MAF threshold is chosen based on the sample size 

and the effect sizes that is expected. Power calculation software such as CaTS Power 

(Skol, Scott, Abecasis, & Boehnke, 2006) can simplify the power calculations for 

GWAS and inform the investigator of the MAF in which the statistical power of the 

study becomes extremely low. Using the command “(--freq) in PLINK, MAF can be 

reported for each SNP, and using the command “--maf”, SNPs can be removed from 

the downstream analysis. 

 

2.3.6.7 Hardy-Weinberg Equilibrium (HWE) 

The final step of Quality Control is checking for HWE. By assuming that the 

sample is under HWE, we can estimate the allele and genotype frequencies from one 

generation to the next. Any departure from this estimated could be due to an error in 

the data, population stratification or an actual association with the phenotype under 

investigation (Wittke-Thompson, Pluzhnikov, & Cox, 2005). HWE can be assessed 

in the GWAS sample using the command “(--hardy) in PLINK. As mentioned before, 

any departure from HWE could be due to genotyping error, however, it could be due 

to a true association with phenotype as well. Thus, SNPs that are extremely out of 

HWE should not be excluded but flagged for further analysis after GWAS is 

performed. The quantitative allelic signals at a marker can be utilized to investigate 

the technical origin behind the deviation from HWE. The null allelic markers can 
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produce multimodal genotype clusters in the heterozygote and the homozygote 

clusters as represented by Figure 9 or can produce an unexpected number of samples 

with no signal as represented by figure 10.  
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Figure 9 Representative figure of deviation from HWE.  

Individuals with AB and BB are divided into sub-clusters AB and AB’, BB and B B’, while AA cluster 

are unaffected individuals. The AB/AB’ split results in some AB samples miscalled as AA (diagnosed 

by Mendelian inconsistencies in the genotypes), as well deviation from HWE due to excess 

homozygosity.  The figure is retrieved from (Stephen Turner et al., 2011). 
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Figure 10 Representative figure of unexpected number of clusters causing diviation 

from HWE. 

 Hemizygous individuals cluster at AO and BO. Individuals with homozygous deletions cluster at OO 

and their genotype calls are missing. The figure is retreived from (Stephen Turner et al., 2011). 
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2.3.8 Replication and Meta-analysis  

2.3.8.1 Statistical Replication  

The gold standard for validating any GWAS is the replication of the results in 

an additional sample that is independent of the first study (Kraft, Zeggini, & Ioannidis, 

2009). That said, there are a variety of criteria have been established that aid in 

defining the “replication” of a GWAS result. This was the subject of a National 

Human Genome Research Institute working group, which outlined several criteria for 

establishing a positive replication (Studies et al., 2007). These criteria are discussed 

in the following paragraphs 

Replication studies should have sufficient sample size to detect the effect of the 

susceptibility allele (Y.-J. Liu, Papasian, Liu, Hamilton, & Deng, 2008). Usually, after 

the detection of a significant association of a trait with a particular SNPs, estimates of 

penetrance and allele-frequency parameters for the associated variant facilitate the 

planning of replication studies (Bush & Moore, 2012). However, when the effects 

reported in the initial GWAS suffer from the winner's curse, where the detected effect 

is likely stronger in the GWAS sample than in the general population due to 

ascertainment bias. Ascertainment bias is a systematic distortion in measuring the true 

frequency of a phenomenon due to the way in which the data are collected (Nicod & 

Largiadèr, 2003).  To account for this bias, replication studies should include samples 

that ideally are larger to account for the over-estimation of effect size (Kraft et al., 

2009).  

One of the most important aspects, in order to have a successful replication 

study, is that it should be conducted in an independent dataset of samples that are 

drawn from the same population as the discovery GWAS (Rietveld et al., 2014), in 
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order to confirm the effect of the allele variation in the original target population. Once 

the effect is confirmed in the target population, other populations may be sampled to 

determine if the SNP has an ethnic-specific effect. Replication of a significant result 

in an additional population is sometimes referred to as generalization, meaning the 

genetic effect is of general relevance to multiple human populations(Bush & Moore, 

2012). 

 

2.3.9 Rare variants and unexplained Heritability  

The underlying rationale for GWAS is the so-called CD/CV (Common 

Disease/Common Variation) hypothesis (Schork, Murray, Frazer, & Topol, 2009). 

Based on improvements in technology, the results from the Human Genome Project 

and other international consortia efforts, commercial genome-wide SNP microarrays 

were designed to capture most common variation across the genome. A model for 

dissecting the constituents of the genetic architecture for complex diseases is 

illustrated by the bivariate plot of the risk allele frequency versus the genetic effect 

strength for the genetic variants (Figure 11). In the future, the chance of detecting 

additional common variants with high risk is small because they should have been 

found by many existing well-powered scans. On the other hand, uncommon variants 

with low risk will be difficult to study for most diseases due to the lack of power in 

many studies, where extremely large sample sizes are necessary to detect them. 
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Figure 11 Model of genetic architecture of complex diseases. 

The feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds 

ratio) is presented. The x-axis represents the frequency of the risk allele, and the y-axis represents the 

effect size. In essence, GWAS mainly detects common variants (MAF> 5%) with moderately low effect 

sizes (OR <1.5). Retrieved from (Manolio et al., 2009) 
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Chapter 3: Methodology 

 

3.1 Ethical Statement  

 All samples used in this study were obtained from Qatar Bio-Bank (QBB). 

Written informed consent has been already taken from all participants’ prior study. 

Ethical approval was obtained from QBB; QBB IRB MOPH Assurance: MOPH-A-

QBB-000222. 

 

3.2 Subjects  

 Our study cohort started by including 6000 healthy Qatari participants. We 

excluded 3000 participants who were related. 3000 unrelated healthy Qatari 

participants aging from 18 to 70 years old remained after exclusion of related 

participants. Subjects with chronic diseases and conditions that might potentially affect 

bone mass, structure, or metabolism were excluded. Hence, subjects with chronic 

disorders involving vital organs (heart, lung, liver, kidney, brain), history of diabetes, 

high cholesterol level, high blood pressure, kidney diseases, stroke, arthritis, 

osteoporosis, fractures, Parkinson disease, thyroid disease, hysterectomy, Hodgkin 

lymphoma, breast, prostate, and lung cancers were excluded from our study. The 

purpose of these exclusions was to minimize the influence of known environmental and 

therapeutic factors on bone mineral density and skeletal system. 

 

3.3 Questionnaires 

 The background questionnaire was self-administered and designed to obtain 

personal socio-demographic information as well as information regarding the 
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participants’ health history and known risk factors for osteoporosis (e.g., smoking, 

personal medical history including fracture history, routine consumption of calcium-

fortified foods, smoking, alcohol, and caffeine consumption, and general physical 

activity habits). All participants included in this study were supplied with the main 

questionnaire from which the demographic variables including age, height, weight, and 

BMI were obtained. In addition, data regarding the medical history of the participants 

were collected using a Nurse questionnaire and if the participants are taking any 

medications or supplements. The nurse questionnaire contained more than 8900 

different medication and supplements. Finally, data regarding the participants’ diet 

(smoking status, specific diet, if milk is included in their diet) were collected using the 

Diet Questionnaire.  

 

3.4 DXA Scan 

The BMD data for 3000 individuals were obtained from Qatar Biobank. A trained 

and certified technician in QBB measured the BMD using the gold standard DXA (GE 

Lunar Prodigy, Madison, WI). 7 BMD measurements were obtained which are the 

BMD of the whole body, the lumbar spine (L1-L4), the pelvis bone, the trunk and the 

femoral neck, femoral troch and femoral ward were all measured. The DXA scan results 

were reported as absolute values of BMD (g/cm2) and Young adult T-Score. The T-

scores were used to categorize the BMD values as normal (T-score ≥ - 1), osteopenia 

(T-score < -1.0 to > -2.5), or osteoporosis (T-score ≤ -2.5) based on the diagnostic 

criteria of WHO for osteoporosis. The same DXA machine was used for screening of 

all participants to avoid any variation in BMD measurements. 
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Figure 12 Scheme of body anatomy showing body parts considered in the study. We 

included 7 BMD measurments; Whole body, Trunk, Pelvis, Spine, Fermoral torch, Femoral Ward and 

Fermoral Neck.  

 
 

3.5 Genotyping Method  

Blood samples were collected for the 3000 participants, and DNA was extracted 

using standard Puregene DNA isolation kit by Gentra Systems, Inc., Minneapolis. 

Samples were aliquoted into barcoded 96-well plates for genotyping. Whole exome 

sequencing was performed in Qatar Biobank on the blood samples of the 3000 

participants. 

 

3.6 Quality Control  

Extensive quality control (QC) measures were used to ensure the highest quality 

data possible (Figure 13). Data from Bead Chips with less than 95% genotyping yields 
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or heritability error rates greater than 1% were excluded. Samples were excluded 

when a call rate was less than 95% and a workflow-related problem was suspected. 

The genomic sample was excluded if the call rate was low (i.e. <95%) due to poor 

sample quality. SNPs were also excluded when the minor allele frequency (MAF) was 

less than 1%. Samples with suspected labeling errors (e.g. females with Y 

chromosome SNP genotypes, duplicate samples with different genotypes, unknown 

identification numbers) that could not be resolved were also excluded. Variants 

showing a departure from HWE P<10−6 were also excluded (Rafiq et al., 2014; van 

Leeuwen et al., 2014; Yodsurang et al., 2018). We used genome wide significance P 

value of 10−8 (Fadista, Manning, Florez, & Groop, 2016; Panagiotou & Ioannidis, 

2012) ,in which SNPs identified below this regression p value were considered 

significantly associated with BMD.  QC analyses were conducted using PLINK 2.0 

toolset (Harvard.edu) (Purcell, Neale, et al., 2007). 
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Figure 13 A flow chart overview of the entire GWAS- Quality Control process along 

with the commands used in PLINK 2.0.  

 

 

3.7 Statistical Analysis   

 GraphPad Prism version 7 and IBM SPSS were used for the phenotypic data 

analysis. The comparison of means for two independent groups was analyzed using 

the Student’s t-test. The biochemical variables were approximately normally 

distributed, and sample SDs were similar. 

Before any of the association analyses, we used principal component analysis 

implemented in EIGENSTRAT (Price, Patterson Nj., et al., 2006) to correct for any 

potential population stratification that may lead to spurious association results. The 

first ten principal components emerging from the EIGENSTRAT analyses, along with 
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sex, height, weight, and age, were used as covariates to adjust the raw BMD values in 

each sample. 

 

3.8.1 Linear Model of Regression  

 The association between a SNP and the polymorphic phenotype was assessed 

using sex-specific, age-standardized residuals that were analyzed under an additive 

genetic model. To adjust for the substructure of the Qatari population, we included 

the four most important principal components (PC), derived from a Multi-

Dimensional Scaling analysis of IBS distances using the PLINK (Purcell, Neale B., et 

al., 2007)  software as covariates in the regression analysis.  To test for association 

with a quantitative trait, linear regression was performed by PLINK to obtain the 

regression coefficient and Wald test asymptotic p-value.  
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Chapter 4: Results 

 

4.1 The baseline characteristics of participants.  

 The demographic and biochemical characteristics of the participants are 

summarized in Table 2 and Table 3, respectively. A total of 3000 participants were 

included in the present study. We included 1442 (48%) male and 1558 (52%) female 

in our study. The male participants in our study population had significantly higher 

weight and height metrics compared to the female participants (p < 0.001).  Each 

participant included in our study was supplied with a questionnaire from which the 

demographic data was collected. Moving on to the biochemical characteristics 

represented in table 3, there was a significant difference between both genders in all 

the tested parameters. However, most of the variables were in the normal reference 

range. Interestingly, the mean of Dihydroxy Vitamin D Total in Qatari men and 

women was 18.13 ng/ml and 19.16 ng/ml respectively, which is considered below the 

normal reference range of vitamin D. Detailed vitamin D assessment will be discussed 

in the below sections. 

 

4.2 The prevalence of vitamin D insufficiency and deficiency. 

 According to the national institute of health, vitamin D level < 20 ng/ml was 

considered insufficient and vitamin D level < 12 ng/ml was considered deficient 

(Harbolic, 2017).  47.2 % and 37.2% of the male and female participants respectively 

had vitamin D insufficiency. In addition, 22.6% and 24.9% of the male and female 

participants respectively had vitamin D deficiency. Figure 14 shows that Qatari 

females (<30 years old) were more prone to vitamin D deficiency compared to older 
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Qatari women. A similar trend was observed in young Qatari males as well. Thus, we 

investigated the frequency of taking vitamin D supplements in the 3000 participants.  

 

4.3 The frequency of taking vitamin D supplements. 

There was a positive trend observed between taking vitamin D supplements and 

age (Figure 15). 63% of females in the age group 51-70 were taking vitamin D 

supplement, while only 24.6% of young females in the age group 18-30 were taking 

vitamin D supplements (Figure 15). similar results were observed with males, the 

frequency of taking vitamin D supplements increased with age in Qatari males. 

However, at a much less frequent compared to females.   

 

4.4 The gender effect on BMD variation  

 Our inclusion criteria for our study was healthy Qatari participants with age 

between 18- 70 years old. The total, femoral troch, femoral upper neck and femoral 

ward for the 3000 participants were assessed using the DXA Scanner. We divided the 

data from the whole sample population into male and female groups to examine any 

gender associations with BMD (Table 4). The gender-specific group means were 

compared using a Student’s t-test. The female participants had lower BMD values 

compared to the male participants (p<0.01) as shown in table 4. 

 

4.5 Correlation between Vitamin status and BMD in the Qatari population  

We tested the correlation between average t-score of BMD of the total body and 

femur (upper neck, troch, and ward) with the vitamin D status. Pearson correlation 

test was used to find the correlation between vitamin D and BMD T- Score for both 

genders. We divided the data of the 3000 participants into 3 categories; Normal, 
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vitamin D insufficient and vitamin D deficiency according to WHO criteria discussed 

earlier.  A positive correlation was observed, meaning, individuals who were vitamin 

D deficient showed lower BMD T-score and vice versa. However, this correlation was 

not significant (P>0.05) for males, but slightly significant for females (p<0.05) as 

shown in figure 16. Thus, we further tested if the BMD results showed any 

improvement if the individuals were taking vitamin D supplements. No significant 

difference was observed between both groups in all the tested parameters; whole body, 

femoral troch, femoral upper neck, and femoral ward BMD as shown in Table 5. For 

the female whole-body BMD, significant difference was observed between females 

taking vitamin D supplements and females who are not taking any vitamin D 

supplements.  

 

4.6 Variants associated with BMD at genome-wide significance level 

The genomic data for 3000 participants were obtained from Qatar Biobank. The 

DNA variants were restricted to those with a minor allele frequency > 0.01. We started 

with 93,546,361SNPs identified. However, only 1,084,750 SNPs passed the extensive 

quality control steps as mentioned in the Methodology. We accounted for the 

population structure in the cohort. In addition, we excluded related individuals from 

the study as related individuals are also genetically related. As an example, siblings 

from same biological parents are about 50% genetically related, which can drive the 

association results and cause bias by creating a subpopulation in the cohort. The 

genetic association was assessed using  PLINK2.0. (Purcell, Neale, et al., 2007). The 

linear model of regression was conducted in our study including, gender, age, weight, 

BMI, vitamin D and the leading 10 genomic principal components as covariates 
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(Kemp et al., 2017; Stuart K. Kim, 2018). A deviation from the random distribution 

was observed in the Q-Q plot (figure 18) of all tested SNPs, indicating that some SNPs 

might have an association with BMD. We carried out the linear regression analysis on 

whole body BMD and 6 BMD measurements obtained from different bones and parts 

of the bones; the Spine, Pelvis, Trunk, Femur Troch, Femur-Upper neck, Femur-

Ward. SNPs were considered as novel variants when no previous reports are found in 

different genomic databases; Open Target Genetics, UK Biobank cohorts, GEFOS 

cohorts, GRCh37 ensembl, Clinvar, gnomAD and NCBI data base. In addition, all 

information regarding the SNPs identified was retrieved from GRCh37 ensembl, 

NCBI and Clinvar.  

In total, 19 autosomal variants were associated with BMD with genome-wide 

significance (p<5x10-8) (Fadista et al., 2016; Panagiotou & Ioannidis, 2012) as shown 

in table 6. These 19 SNPs are overlapping 20 genes and overlapping 53 transcripts as 

shown in figure 19.  3 SNPs are present on chromosome 7, 2 SNPs are on chromosome 

11, 2 SNPs on chromosome 18, 2 SNPs on chromosome 1, two SNPs on chromosome 

2 and one SNP present on each of chromosome 17,21,22,1,9,6, 19,3,4.  

Fifteen SNPs were found to be associated with low Total body BMD. Two of 

these 15 SNPs we highly significant in whole body, Spine and Trunk BMD, which 

are rs4727924 (P value = 1.86x10-11) and rs2536172 (P value= 2.75x10-11). Both of 

these SNPs lies within chromosome 7 at q31.31 in FAM3C gene which is overlapping 

with the WNT16 gene. The third SNP on chromosome 7, which is rs1839588 (P value= 

2.00x10-08) is associated with Pelvis BMD. It is an intronic variant of SFRP4 gene and 

is found on band p14.1. 12 of the SNPs are intronic variants on different 

chromosomes;  in MALAT1 gene on chromosome 11, CRYBB2P1gene on 
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chromosome 22, FASLG gene on chromosome 1, FAM189A2 gene on chromosome 

9, SAG gene on chromosome 2, PIGN gene on chromosome 18, RP11-15A1.7 gene 

on chromosome 19, and finally LSAMP gene on chromosome 3. The rest four SNPs 

are intergenic variant, thus, not overlapping any coding genes.  

Four SNPs were observed at low BMD of trunk, rs4727924, rs2536172 

mentioned earlier, and 2 SNPs on chromosome 4 and 1 which are intronic variant 

overlapping BMPR1B gene and an intergenic variant respectively. Finally, no 

significant SNPs were observed to be associated with BMD of the Upper neck or 

Troch BMD of the femur. A summary of all observed significant SNPs (above the 

significance level of 10-08) are present in Table 6. Figures 20 to 26 represents the 

Manhattan plots for all SNPs tested for the 7 BMD traits. 

 

4.7 Validation of previous associations with BMD and osteoporosis  

The results obtained from our study was compared to previous genome-wide 

association studies of osteoporosis and BMD. One study performed Meta-analysis for 

SNPs associated with BMD of the femur upper neck and the lumbar spine. They 

identified 62 SNPs showing the genome-wide association significance (K. Estrada et 

al., 2012). From these identified SNPs, 57 SNPs were replicated by a study conducted 

by the UK biobank. Another study conducted a Meta-analysis on genomic variants 

associated with BMD and they and identified 9 SNPs with genome-wide significant 

associations (Moayyeri et al., 2014). All of the previous SNPs were replicated by the 

UK Biobank study. A third GWA study was conducted on BMD and bone fracture, 

13 SNPs were identified (Mullin et al., 2017) and they were replicated by (S. K. Kim, 

2018).  Finally, Kim et al., identified 899 loci associated with heal BMD, 266 loci are 
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replicated loci and 613 are new loci with p-values below 1.6x10-4 (i.e. Bonferroni 

cutoff) (S. K. Kim, 2018). In our study, we identified 19 SNPs to be associated with 

spine, pelvis and femur BMD with genome-wide association significance. Six of 

which those SNPs were replicated by the UK Biobank and GEFOS studies and 13 are 

new SNPs with no previous data reported.  

 

 

Table 2 The demographic characteristics of Qatari male and females in our 

cohort. 

 
Parameter Male (± SD) Female (± SD) P-Value 

Age (years) 36.59 (±10.6) 36.19 (±11.6) >0.329 

Height (cm) 172.37 (±6.3) 158.09 (±5.9) <0.001 

Weight (kg) 84.84 (±17.9) 71.18 (±15.9) <0.001 

BMI 28.29 (±5.4) 28.48 (±6.2) >0.391 

 
The age, height, weight, and BMI of both genders were summarized and compared. N = 3000,  
Group specific means are compared using Student’s t-test.  
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Table 3 Biochemical Characteristics of 3000 Qatari participant. 

 

Parameter Male (± SD) Female (± SD) P-Value 

Sodium 
(mmol/L) 

140.89 (±2.1) 140.03 (±2.1) P<0.001 

Potassium 
(mmol/L) 

4.346 (±0.3) 4.31(±0.3) P<0.002 

Chloride 
(mmol/L) 

101.09 (±2.1) 101.38 (±2.1) P<0.001 

Ca corrected 
(mmol/L) 

2.2754 (±0.8) 2.283 (±0.8) P<0.001 

Phosphorus 
(mmol/l) 

1.1343 (±0.2) 1.1701 (±0.1) P<0.001 

Vitamin D 
(ng/ml) 

18.13 (±11.4) 19.16 (±11.6) P<0.015 
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Table 4 Summary of BMD T-score measurements in participants. 

  
Total 

Cohort 
Mean (SD) 

Male Mean 
(SD) 

Female 
Mean (SD) 

P-Value 

Whole Body 0.39 (±1.15) 0.64 (±1.16) 0.17 (±1.10) P<0.001 

Femoral 
Torch 

-0.37 
(±1.177) 

-0.59 
(±1.25) 

-0.67 
(±1.01) 

P<0.001 

Femoral 
Upper Neck 

0.06 (±1.31) 0.37 
(±1.427) 

-2.25 
(±1.11) 

P<0.001 

Femoral 
Ward 

-0.69 
(±1.22) 

-0.47 
(±1.33) 

-0.89 
(±1.08) 

P<0.001 

 
All BMD measurements are reported in T-score. The female subjects had lower BMD values compared 
to male subjects. N = 3000, Student’s unpaired t-test 
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Table 5 Vitamin D supplement effect on Bone Mineral Density 

  
Whole 
Body 

Femoral 
Torch 

Femoral 
Upper Neck 

Femoral 
Wards 

T score for the BMD in Qatari Male 
Vitamin D 

Supplements 
0.67 (±1.2) -0.11 (±1.2) 0.31 (±1.4) -0.56 (±1.4) 

No vitamin D 
Supplements 

0.63 (±1.2) -0.05 (±1.2) 0.38 (±1.42) -0.45 (±1.3) 

P Value >0.6560 >0.6560 >0.8723 >0.2625 

T score for the BMD in Qatari Female 
Vitamin D 

Supplements 
0.33 (±1.1) -0.61 (±0.9) -0.31 (±1.1) -0.95 (±1.04) 

No vitamin D 
Supplements 

0.12 (±1.0) -0.69 (±1.0) -0.19 (±1.1) -0.87 (±1.0) 

P Value 0.0014 >0.2382 >0.9439 >0.2218 
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Table 6 Genome-Wide Significant SNPs for Whole body, Lumber spine, Pelvis, 

Trunk and Femoral upper neck, Femoral troch and Femoral ward. 

 
Chr RefSN

P 
Positio

n 
Band Ancest

or 
Allele 

Effect 
Allele 

P-
Value 

Gene Phenot
ype 

report
ed 

Study P-
Value 

Sampl
e Size 

Whole Body BMD 
7 
 

rs4727
924 

 

121031
879 

 

q31.31 
 

C T 1.86x1
0-11 

 

FAM3
C 
 

BMD UK 
Bioban

k 
 

4.13x1
0-160 

 

194,39
8 
 

7 rs2536
172 

 

120997
560 

 

q31.31 
 

A T 5.75x1
0-08 

 

FAM3
C/WN

T16 
intronic 
variant 

 

Fractur
ed/brok

en 
bones 

 

UK 
BioBan

K 

2.09x1
0-180 

 

194,39
8 
 

11 rs2020
70768 

 

652734
53 

 

q13.1 
 

T C 1.30x1
0-09 

 

MALA
T1 

 

No 
Previou
s Data 

N/A N/A N/A 

17 rs5548
08159 

 

619786
07 

 

q23.3 
 

C T 4.25x1
0-09 

 

interge
nic 

variant 
 

No 
Previou
s Data 

N/A N/A N/A 

21 
 

rs3748
76997/r
s55333
5180 

 

265743
54 

 

q21.2 
 

T deletio
n 

8.44x1
0-09 

 

Splice 
variant 

No 
Previou
s Data 

N/A N/A N/A 

22 rs4891
25 

 

259110
56 

 

q12.1 
 

G A 2.25x1
0-08 

 

CRYB
B2P1: 

intronic 
variant 

 

Variou
s 

disease
s 

UK 
Bioban

k 

N/A N/A 

1 
 

rs8678
65671 

 

172626
211 

 

q24.3 
 

A G 3.03x1
0-08 

 

FASL
G: 

intronic 
Variant 

 

No 
Previou
s Data 

N/A N/A N/A 

9 rs7345
5199 

 

719612
60 

 

q21.12 
 

A G 3.38x1
0-08 

 

FAM1
89A2: 
Intron 

Variant 
 

No 
Previou
s Data 

N/A N/A N/A 

6 rs3679
49909 

 

132861
904 

 

q23.2 
 

T C 4.94x1
0-08 

 

interge
nic 

variant 
 

No 
Previou
s Data 

N/A N/A N/A 

18 rs1907
38498 

 

598314
63 

 

q21.33 
 

G A 5.71x1
0-08 

 

PIGN: 
Intron 

Variant 
 

Variou
s 

disease 

UK 
bioban

k 

N/A N/A 

2 rs1050
627711 

233310
901 

 

q37.1 C T 6.08x1
0-08 

SAG: 
Intron 

Variant 

No 
Previou
s Data 

N/A N/A N/A 

18 
 

rs1914
29075 

 

597902
12 

 

q21.33 
 

C T 6.93x1
0-08 

 

PIGN: 
Intron 

Variant 
 

Variou
s 

disease 

UK 
bioban

k 

N/A N/A 

1 
 

rs8665
48296 

 

234651
783 

 

q42.2 
 

C T 7.77x1
0-08 

 

interge
nic 

variant 
 

No 
Previou
s Data 

N/A N/A N/A 

19 rs1493
39318 

445036
70 

q13.31 
 

TA deletio
n 

8.35x1
0-08 

RP11-
15A1.7

No 
Previou

N/A N/A N/A 
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 : 
intronic 
variant 

 
 

s Data 

3 
 

rs1424
79295 

 

117374
777 

 

q13.32 
 

T dup t 
 

9.68x1
0-08 

 

LSAM
P: 

intronic 
variant 

 

No 
Previou
s Data 

N/A N/A N/A 

BMD of the Spine 
7 rs4727

924 
121031

879 
 

q31.31 
 

C T 1.63x1
0-08 

 

FAM3
C/WN

T16 
intronic 
variant 

 

BMD, 
Fractur
e risk 

 

UK 
BioBan

K, 
GEFO

S 
 
 

5.56x1
0-160, 

4.39x1
0-10 

 
 

194,39, 
335,58

7 
 
 

7 rs2536
172 

 

120997
560 

 

q31.31 
 

A T 5.75x1
0-08 

 

FAM3
C/WN

T16 
intronic 
variant 

 

Fractur
ed/brok

en 
bones 

 

UK 
BioBan

K 

2.09x1
0-180 

 

194,39
8 
 

BMD of the Pelvis 
7 
 

rs1839
588 

 

379798
88 

 

p14.1 
 

C T 2.00x1
0-08 

 

SFRP4/ 
intronic 
variant 

 

BMD 
 

UK 
BioBan

K 

2.70x1
0-24 

 

194,39
8 
 

BMD of the Trunk 
7 rs4727

924 
121031

879 
 

rs4727
924 

C T 1.63x1
0-08 

 

FAM3
C/WN

T16 
intronic 
variant 

 

BMD, 
Fractur
e risk 

 

UK 
BioBan

K, 
GEFO

S 
 
 

5.56x1
0-160, 

4.39x1
0-10 

 
 

194,39, 
335,58

7 
 
 

7 rs2536
172 

 

120997
560 

 

rs2536
172 

 

A T 5.75x1
0-08 

 

FAM3
C/WN

T16 
intronic 
variant 

 

Fractur
ed/brok

en 
bones 

 

UK 
BioBan

K 

2.09x1
0-180 

 

194,39
8 
 

4 
 

rs1050
715238 

 

957573
73 

 

q22.3 
 

A G 4.77x1
0-08 

 

BMPR
1B/ 

Introni
c 

Variant 
 

No 
Previou
s Data 

N/A N/A N/A 

11 
 

rs3713
19602 

 

969538
96 

 

q21 
 

A C 6.00x1
0-08 

 

interge
nic 

variant 
 

No 
Previou
s Data 

N/A N/A N/A 

BMD of the Femoral Ward 
2 rs6215

0773 
 

109035
597 

 

q12.3 
 

G C 1.72x1
0-08 

 

interge
nic 

variant 
 

No 
Previou
s Data 

N/A N/A N/A 
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Figure 14 A)The prevelence of Vitmaine D insuffecincy and deficincy in the Qatari 

population. B) The prevelance of Vitamin D deficiencey in Qatari Females against 

diffeent age groups C) The prevelance of Vitamin D deficiencey in Qatari against 

diffeent age groups. 
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Figure 15 The frequency of taking vitamine D supplements by Qatari females and 

males.  The frequency of taking Vitamin supplements increased with age with both 

gender.  
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Figure 16 Correlation of vitamin D status with BMD average T score.  Pearson 

correlation was used to find the correlation between vitamin D and Average T score. 

No correlation was observed between Average T score and Vitamin D in male (P>0.09). 

A positive correlation was observed between Average T score and Vitamin D in females 

(p<0.05).  
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Figure 17 Principle componant analysis of the study cohort. Our cohort shows that the 

Qatari Population consist of 3 main clusters originating from Arabian origin, Persian 

origin and african admixture.  

 
 
 

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

PC2



  

70 

 

 
 

Figure 18 GWAS, quantile-quantile plots (QQ-plots) for the 7 phenotypic traits tested.  
 

 
 
 

 
 

Figure 19 Summary of Significant SNPs obtained from GWAS. The figure was 

constructed using GRch37, Ensembl. We identified 19 variants overlapping 20 genes.  
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Figure 20 Manhatten plot representing genome-wide association results for whole body 

BMD of 3000 participents. The red line shows the genome wide significance threshold 

(p<5x10-8). 15 SNPs were identified from Whole body’s BMD to be significantly 

associated with BMD. 
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Figure 21 Manhatten plot representing genome genome-wide association results for 

BMD of Pelvis of 3000 participents. The red line shows the genome wide significance 

threshold (p<5x10-8). 1 SNP was identified from pelvis’ BMD to be significantly 

associated with BMD. 
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Figure 22 Manhatten plot representing genome-wide association results for BMD of 

Spine of 3000 participents. The red line shows the genome wide significance threshold 

(p<5x10-8). 2 SNPs were identified from Spine’s BMD to be significantly associated 

with BMD. 
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Figure 23 Manhatten plot representing genome-wide association results for BMD of 

Trunk for 3000 participents. The red line shows the genome wide significance threshold 

(p<5x10-8). 4 SNPs were identified from Trunk’s BMD to be significantly associated 

with BMD. 

 

 



  

75 

 

 
 

Figure 24 Manhatten plot representing genome-wide association results for BMD of 

Troch of Femur for 3000 participents. No significant SNPs were detected.  
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Figure 25 Manhatten plot representing genome-wide association results for BMD of 

Upper neck of the Femur for 3000 participents. No significant SNPs were detected 
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Figure 26 Manhatten plot representing the Genome-wide association results for BMD 

of Ward of the Femur for 3000 participents. The red line shows the genome wide 

significance threshold (p<5x10-8). 1 SNPs was identified from Wards’ triangle BMD to 

be significantly associated with BMD. 
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Chapter 5: Discussion  

Osteoporosis accounts for more than 8.9 million fracture each year. According 

to the International Osteoporosis Foundation (IOF), more than 200 million women 

suffered from osteoporosis globally and 1 in 3 women and 1 in 5 men over the age of 

50 experienced an osteoporotic bone fracture.  

5.1 Phenotypic variables associated with BMD trait. 

Vitamin D plays an essential role in different physiological functions in the 

human body in addition to its major role in the bone homeostasis process. In this 

context, several epidemiological studies have revealed the contribution of vitamin D 

deficiency in wide range of chronic diseases including cardiovascular diseases, 

metabolic diseases (ex: diabetes mellitus), autoimmune diseases (ex: multiple sclerosis 

and rheumatoid arthritis) and neoplastic diseases (ex: colon and breast cancer) (Khazai, 

Judd Se, & Tangpricha, 2008; Kulie et al., 2009; Pittas, Lau J., Hu, & Dawson-Hughes, 

2007; Soontrapa & Chailurkit, 2009).  

Vitamin D deficiency has become a global public health problem. Several 

studies have attracted global attention to the increasing prevalence of vitamin D 

deficiency around the world. However, most of these studies have focused on the elder 

population, with only a few studies reporting the prevalence of vitamin D deficiency in 

the younger population. Recent studies have shown that more than 90% of the non-

white population and around 75% of the white population groups in the US suffer from 

vitamin D insufficiency (25- hydroxyvitamin D < 30 ng/ml) (Adams & Hewison, 2010). 

On the other hand, the prevalence of vitamin D deficiency varies across various 
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countries. For instance, vitamin D deficiency is highly prevalent in the UK representing 

87% and 60% of the participants in the winter and the summer respectively (25(OH) D 

< 75 nmol/L) (Gonzalez-Molero et al., 2011). Other countries in Europe showed a 

moderate risk of vitamin D deficiency,  where 25(OH) D< 20 ng/ml) was found in 51%, 

50% and 40% in Ireland, Germany and Spain respectively (Gonzalez-Molero et al., 

2011; O'Sullivan, Suibhne, Cox, Healy, & O'Morain, 2008). Despite the abundant 

sunshine in the Middle East and Asia compared to Europe and US, countries in these 

areas have reported the highest rate of hypovitaminosis D worldwide. For instance, in 

Thailand, the prevalence of vitamin D deficiency was found to be in 77% of 

premenopausal women, and it reached up to 90% in India (Goswami, Sk, & 

Kochupillai, 2008; Soontrapa & Chailurkit, 2009). Similar data was reported from a 

cross-sectional study of young Jordanian women, where 97% suffered from vitamin D 

deficiency <50 nmol/L (Gharaibeh & Stoecker, 2009). In Morocco, 91% of healthy 

adult females (24-77 years) had vitamin D level 25(OH) D<75 nmol/L (Allali et al., 

2009), and 72% of adult Lebanese had serum level of vitamin D <12 ng/ml (Gannage-

Yared, Chemali R., Yaacoub, & Halaby, 2000). On the other hand, a study done in 

Tunisia reported a lower prevalence of vitamin D deficiency (47% of the participants) 

(Meddeb et al., 2005). Shockingly, a study done in 2010, showed that 97% of all health 

care professionals in Qatar were vitamin D deficient (mean level of 25(OH) D<75 

nmol/L) (Mahdy et al., 2010). In fact, Qatar is thought to have one of the highest vitamin 

D insufficiency and vitamin D deficiency rates (Badawi, Arora, Sadoun, Al-Thani, & 

Thani, 2012). Sunlight is not the only factor that contributes to vitamin D deficiency, 

inadequate vitamin D fortification in the dietary products (milk, cereal, and drinks such 

as orange juice), difference in clothing style between different cultures and seasonal 
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variations where vitamin D levels are highest in September at the end of summer and 

lowest in winter (Diehl & Chiu, 2010; O'Sullivan et al., 2008). 

In our study, we determined the prevalence of vitamin D insufficiency and 

deficiency among both genders (18-70 years) of the Qatari population. The Data for 

3000 samples were collected from Qatari Biobank. Vitamin D insufficiency (vitamin D 

level < 20 μg/L) was prevalent in 47.2 % and 37.2 of the male and female participants 

respectively. Vitamin D deficiency (vitamin D level < 12 μg/L) was prevalent in 22.6 

and 24.9 of the male and female participants respectively. In total 69.8 and 62.1 of 

Qatari males and females have lower than normal vitamin D levels respectively.  

Similar data were reported from a study conducted on Saudi females were 

79.1% had severe vitamin D deficiency (25(OH) D< 25 nmol/L), while 20.9% showed 

vitamin D insufficiency or mild to moderate deficiency (serum 25(OH)D between 25–

50 nmol/L) with a mean level of 31.3 ± 5.6. The reason why vitamin D deficiency is 

highly prevalent among the population of that region could be due to the fact that these 

countries enjoy a sunny climate throughout the year, however, the local population 

exposure to sunlight is limited due to the high temperature at day time, as noticed in 

our study. 

We have observed the influence of socio-demographic characteristics on 

vitamin D levels of the Qatari population. Interestingly, younger women and men (<30 

years) have more vitamin D deficiency than elder women and men (P ≤ 0.00). However, 

other studies reported that vitamin D level decreases with aging (Al-Turki, Sadat-Ali 

M., Al-Elq, A., & Al-Ali, 2008; Gonzalez-Molero et al., 2011). In our study, we 
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observed that the educational levels and employment status had no significant impact 

on vitamin D level, as hypovitaminosis D was highly prevalent among young adults of 

females and males who are supposedly highly educated and working compared to the 

elder group. Our findings could be explained by the fact that most highly educated 

young adults are employed and due to the hot weather of Qatar, most of the Qatari 

population are employed indoors with less sun exposure, on the other hand, elder people 

have more free time for sun exposure. In addition, the diet for those in the workplace 

comprises mainly fast food, which lacks many important vitamins and minerals. Our 

findings were very similar to a study conducted in Saudi Arabia females (Al-Mogbel, 

2012). They have reported that Younger women (<29 years) have more vitamin D 

deficiency than older women (P ≤ 0.00). In addition, they have found out that the 

educational levels and employment status had a large impact on vitamin D level in our 

study, where hypovitaminosis D was more common among highly educated and 

working females (P value= 0,014 and 0,000, respectively) (Al-Turki et al., 2008). In 

addition to the socio-demographic characteristics, the low frequency of taking vitamin 

D supplements could be a very important contributing factor to the high prevalence of 

vitamin D deficiency in the younger population. In our study, we found out that around 

50% of the Qatari females aged from 51-70 are on vitamin D supplements. However, 

only 23 % of women at age 18-30 and 34% of women at age 31 to 40 are taking vitamin 

D supplements.  In addition, the difference in the frequency of vitamin D supplements 

between both genders could explain the reason why vitamin D deficiency is more 

prevalent among males compared to females.  This result might be explained by the 

fact that usually female are more concern with taking supplements and vitamin for the 

health of their hair, nails, and skins more than the male gender. 
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Calcium and vitamin D influence the overall mineralization of the skeleton, 

bone turnover rate and most importantly, the occurrence of bone fractures. In addition, 

both calcium and vitamin D play an essential role in the development of peak bone 

mass and the prevention of age-related bone loss. In the cases of vitamin D deficiency, 

1,25(OH)2D will decrease leading to a decrease in calcium absorption. Thus, 

decreasing bone mineralization.  Despite the importance of calcium and vitamin D in 

the protection of bones, they should not be used solely for the prevention and treatment 

of osteoporosis.  

 Elders tend to be at higher risk of vitamin D and calcium deficiency due to 

decreased dietary intake, usually as a result of decreased overall dietary energy intake 

and infrequent exposure to sunlight. Even though young adults are at high risk of 

vitamin D and calcium deficiency as well, very few studies have investigated the 

determinants of circulating 25-hydroxyvitamin in young adults. A recent cross-

sectional study in Europe has shown that almost one-fifth of the youth included in this 

study suffered from vitamin D deficiency, and more than half had vitamin D 

insufficiency or worse (Tønnesen, Hovind, Jensen, & Schwarz, 2016). 

It is generally known that the uptake of calcium and vitamin D might have a 

protective influence on bone mineral density (Daly, Brown, Bass, Kukuljan, & 

Nowson, 2006). Despite all of the studies conducted, the effects of vitamin D3 as a 

treatment for osteoporosis in adulthood are controversial. Conflicting reports suggest 

vitamin D3 supplementation in adulthood reduces (Bischoff-Ferrari et al., 2005; Tang, 

Eslick, Nowson, Smith, & Bensoussan, 2007),  has no effect (Michaelsson, Melhus, 

Bellocco, & Wolk, 2003; Smith et al., 2007), or increases the incidence of osteoporotic 

fractures (Sanders et al., 2010). In our study, a positive correlation between vitamin D 
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and BMD was observed. However, the correlation was not significant P<0.05. To 

further investigate this correlation, we tested the correlation of vitamin D supplements 

and BMD t score of different parts of the femur and whole-body BMD among the Qatari 

population. A positive correlation was observed; however, this correlation was not very 

significant as well.  

In consistent with our finding,  a recent study (Trajanoska et al., 2018) analyzed 

the genetic data of more than 500,000 people in the largest-ever study looking at the 

genetics of osteoporosis and bone fracture risk. They found that genetic predisposition 

to low levels of vitamin D and calcium intake – previously thought to be important in 

determining someone’s risk of fracturing their bones – does not affect someone’s 

chances of developing osteoporosis. In addition, a systematic review combining 23 

separate studies found that vitamin D supplementation in the people suffering from 

vitamin D deficiency was not effective in reducing fracture risk (Reid, Bolland, & Grey, 

2014). The negative findings have shown that perception that vitamin D works directly 

on bone cells to promote mineralization is probably incorrect. Thus, the continued 

widespread use of vitamin D supplements as a treatment or protective measure for 

osteoporosis in community-dwelling adults without specific risk factors for vitamin D 

deficiency seems to be inappropriate (Reid et al., 2014). 

 
5.2 Genomic variants associated with BMD trait.  

Moving on to the genomic data, a genomic association study was conducted on 

genomic data of 3000 participants obtained from Qatar Biobank. A total of 19 SNPs 

were identified in our study with genome-wide significant p-values of <5x10-08. 6 SNPs 

of the 19 SNPs identified were replicated by the UK biobank GWAS and GEFOS. 
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Inconsistent with previous studies conducted on BMD, our study provides evidence that 

the genetic basis of BMD phenotype is polygenic, thus, many common genomic 

variants contribute to the final small effects (K. Estrada et al., 2012; Stuart K. Kim, 

2018; Moayyeri et al., 2014; Mullin et al., 2017). Sequencing results have shown that 

BMD phenotype could be affected by rare genetic variants as well (Zheng et al., 2015). 

Zheng et al., identified a novel non-coding genetic variant rs148771817 

(Pmeta = 1 × 10-11) near WNT16 gene that showed a large effect on BMD phenotype  

5.2.1 Replicated SNPs known to be associated with BMD 

Two of the genomic variants, rs4727924 and rs2536172, identified in our study 

are located in the locus 7q31.31 are associated with whole body, Spine and Femoral 

Troch BMD. These regions contain three genes WNT16, FAM3C and C7orf58. 

Interestingly, both SNPs were observed together on BMD of different bones. This could 

be due to the high LD in this region. WNT16 gene is the best candidate to affect BMD 

at this locus based on our current knowledge considering the fact that it belongs to the 

protein family Wnt. Expectedly, the Wnt signaling pathway is known to play an 

essential role in bone physiology and specifically for bone formation and remodeling 

(Krishnan, Bryant, & Macdougald, 2006; Milat & Ng, 2009). Moreover, functional 

studies conducted on the WNT16 gene knock out in mice showed a reduction in total 

BMD at age of 24 weeks. The reduction in total BMD was due to a decrease in bone 

mineral content and the area of the bone in the mouse (Medina-Gomez et al., 2012). 

Not only the WNT16 gene is associated with bones in this region, but also the FAM3C 

gene is widely expressed in different cells including the osteoblasts (Zhu et al., 2002). 

Up to date, only small information is known about C7orf58, the third gene in that area. 
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However, due to the hypothesis-free nature of GWA study, we cannot exclude the 

possibility that any of these genes may code for proteins that are essential in BMD 

phenotype. rs4727924 and rs2536172 were reported previously to be associated with 

heal BMD trait by (Medina-Gomez et al., 2012), Generation R discovery cohort, UK 

Biobank and GEFOS at very high genome-wide significance; 4.13e-160 and 2.09e-180, 

respectively as shown in figure 27 and 28.  

 

 

 

Figure 27 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs4727924 by the UK biobank cohort. 

 
 
 

Traits associated with rs4727924 in UK Biobank
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Figure 28 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs2536172 by the UK biobank cohort. 

 
 
 

Traits associated with rs2536172 in UK Biobank
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Figure 29 Representative figure of genetic evidence associated with7q31.31 locus. The 

expansion is shown by LD and fine mapping. The figure is created by Open Target 

genetics.  

 

The third SNP that we replicated in our study is rs1839588. It was previously 

reported by UK biobank to be associated with Pelvis BMD as shown in figure 30. It is 

an intronic variant on locus 7p14.1 overlapping the SFRP4 gene. It is believed that the 

SFRP4 gene act a soluble mediator that bind to WNT ligand and alter the WNT 

signaling pathway discussed earlier. Studies have shown that SFRP4 protein decreases 

the bone formation process and inhibits the proliferation of osteoblasts by antagonizing 

the Wnt signaling. In addition, it was recently shown that sFRP4-dependent Wnt signal 

plays a critical role in bone remodeling process and age-related bone loss that leads to 

bone fractures (Haraguchi et al., 2016). 
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Figure 30 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs1839588 by the UK biobank cohort. 

 

 Two variants replicated in our study; rs190738498 and rs191429075 were 

harbored in 18 q21.33 in the PIGN gene. Both intronic variants were reported 

previously by UK Biobank. However, those variants were reported with different 

phenotypic traits including physical traits but at low significance, as shown in figure 31 

& 29. According to open target genetics, rs191429075 variant was found to be linked 

to RNF152 gene as well.  In our study, these two variants were found to be associated 

with whole body BMD at a genome-wide significance (10^-8). The PIGN gene is one 

of more than 20 genes that are involved in GPI anchor biosynthesis pathway (Ohba et 

al., 2014).  A recent study has reported the PIGN mutation in an Israeli Arab family is 

Traits associated with rs1839588 in UK Biobank
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responsible for multiple congenital anomalies including cardiac and skeletal defects 

(Khayat et al., 2016). However, the exact mechanism is still unknown.  

 

 

Figure 31 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs190738498 by the UK biobank cohort.  

 

Traits associated with rs190738498 in UK Biobank
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Figure 32 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs191429075 by the UK biobank cohort. 

 
 

The final replicated variant in our study is rs489125 intronic variant. it is found 

on 22q12.1 locus overlapping CRYBB2P1 gene. This variant was reported by the UK 

biobank as well with varies diseases. But most significant with physical health and 

maternal diseases as shown in figure 33. In our study, it was reported with whole body 

BMD. CRYBB2P1 is a pseudogene that belongs to the β-crystallin family. It is 

transcribed in most tissues except the eye tissue. Till now, there are no proteins 

associated with that gene (Messina-Baas, Gonzalez-Garay, González-Huerta, Toral-

López, & Cuevas-Covarrubias, 2016). In addition, there is no known mechanism 

regarding how it affects physical phenotype.   

 

Traits associated with rs191429075 in UK Biobank
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Figure 33 Representative figure from Open Target Genetics representing the traits 

reported to be associated with rs489125 by the UK biobank cohort. 

 

 

5.2.2 Novel SNPs identified in our study associated with BMD phenotype.  

We identified 13 SNPs associated with whole body, trunk, femoral ward BMD 

with genome-wide significant p-values of <6.12E-08 in the cohort of 3000 Qatari 

participants. 7 of these variants were intronic variants harbored in 6 gene loci; MALAT1, 

SAG FASLG, FAM189A2, RP11-15A1.7, LSAMP, and BMPR1B. One variant is a splice 

variant and the remaining 5 variants were intergenic variants.  

The rs202070768 intronic variant is found on the 11q13.1 locus. It is found to 

be overlapping the MALAT1 gene. A recent study conducted in 2018 demonstrated that 

MALAT1 gene play an essential role in the onset of osteolysis (Yang, Zhang, Li, & 

Wen, 2018). In addition, X yang et al., concluded that MALAT1 is a potential 

Traits associated with rs489125 in UK Biobank
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therapeutic target for treating osteolysis especially in patients suffering from osteolysis 

associated with knee replacement (Yang et al., 2018).  

The rs374876997/rs553335180 is a splice variant at 21q21.2 locus. The closest 

gene to this variant is the MRPL39 gene. Variants in this gene have been associated 

with BMD trait since 2005. Studies have shown differences in the expression of that 

gene between individuals with low and high BMD (Y. Z. Liu et al., 2005). 

The rs1050627711 is an intronic variant at the q37.1 locus overlapping the SAG 

gene. This variant was detected to be associated with whole body BMD at a genome 

wide significance of 6.08x10-08. The visual/β-arrestins, a small family of proteins, 

encoded by the SAG gene, originally described for their role in the desensitization and 

intracellular trafficking of G protein–coupled receptors (GPCRs), have emerged as key 

regulators of multiple signaling pathways. Recent studies have shown that β-arrestins 

could play an essential role in bone metabolism and remodeling (Peterson & Luttrell, 

2017).  

The rs867865671 is an intronic variant at 1q24.3 that was detected in our study 

at a genome-wide significance of 3.03E-08 in whole body BMD. No previous reports 

are available regarding this intronic variant association with BMD. However, this 

variant is found to be overlapping the FASLG gene, which plays an essential role in 

bone formation and altering bone mineral density. Estrogen deficiency in post-

menopausal women is known to be a major cause of osteoporosis and low BMD. In this 

context, estrogen plays a key role in maintaining the ratio between bone formation 

(osteoblasts) and bone resorption (osteoclasts) by inducing apoptosis of osteoclasts. 
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Studies have shown that FASLG gene plays an important role in bone formation. 

Basically, estrogen hormone induces FASL in osteoblasts, which in turns results in 

osteoclasts’ apoptosis by autocrine mechanism leading to increasing of BMD (Garcia 

et al., 2013; Jones, 2015; Krum et al., 2008).  

The rs142479295 intronic variant is found on the 3q13.32. This variant was 

identified in our study with genomic-wide significance of 9.68E-08. This variant is 

overlapping the LSAMP gene. A recent study has shown that a frequent deletion in this 

locus is associated with osteosarcomas, which is the most frequent primary malignant 

bone tumors (Baroy et al., 2014).  

The rs1050715238 intronic variant is found on 4q22.3 locus. It was identified 

in our study with a genome-wide significance of 4.77E-08 in BMD of the trunk. It is 

found to be overlapping the bone morphogenetic protein receptor type 1B gene 

(BMPR1B). These proteins are essential for inducing the formation of bones and 

cartilage. This gene is essential for encoding bone morphogenetic protein receptors. 

The disruption of BMPR1B gene led to osteopenia in mice model (Shi et al., 2016). No 

previous reports on the traits associated with that variant. 

The rs73455199 intronic variant is found on the 9q21.12 locus. This variant was 

identified in our study with a genomic wide significance of 3.38E-08.  It is found to be 

overlapping the FAM189A2 gene. The rs149339318 intronic variant is found on 

19q13.3 locus. This variant was identified in our study with genome-wide significance 

of 8.35E-08. It is overlapping the RP11-15A1.7 gene. Until now, there is no information 

regarding the function of those protein in literature.  
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5 SNPs identified in our study are intergenic variant; rs554808159 in 17 q23.3, 

rs367949909 in 6 q23.2, rs866548296 in 1 q42.2, rs371319602 in 11 q21 and 

rs62150773 in 2 q12.3 locus. In the past 50 years, studies have shown that a large 

proportion of the DNA is transcribed but not translated into proteins. A recent study 

has shown that 75% of the human DNA can be transcribed, however, only 1 to 2 % get 

translated into proteins (Bergmann & Spector, 2014). Thousands of diseases associated 

SNPs are found in intergenic regions, which make it difficult for researchers to 

understand their association with diseases. Even though evidence has shown that the 

non-coding SNPs are frequently located near regulatory elements (Maurano et al., 

2012), so far, most of the studies focus on disease-associated SNPs found in the coding 

regions only.  Yet,  93% of the SNPs identified so far through GWA studies are located 

in non-coding regions including the intergenic region (Maurano et al., 2012). Thus, 

presenting major challenges to researchers to interpret their association with a particular 

trait. 
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Chapter 5: Conclusion  

Osteopetrosis is a devastating disease that is characterized by compromised 

bone strength leading to increased risk of fracture. It is defined as BMD that lies 2.5 

SD or more below the average value for young healthy women, as measured with DXA 

scan. BMD is the most important predictor of fracture risk.  According to the executive 

summary of the IOF audit report, osteoporosis is a neglected disease, not being 

integrated in to medical curricula of most countries, and the level of awareness about 

osteoporosis is estimated as poor to medium in Arab countries (IOF, 2011). 

It has been known for a long time that vitamin D supplements could improve 

BMD status and help in decreasing the fracture risk. A recent study (Trajanoska et al., 

2018) analyzed the genetic data of more than 500,000 people in the largest-ever study 

looking at the genetics of osteoporosis and bone fracture risk. They found that genetic 

predisposition to low levels of vitamin D and calcium intake – previously thought to be 

important in determining someone’s risk of fracturing their bones – does not affect 

someone’s chances of developing osteoporosis. Our study supported their results as we 

didn’t observe any significant correlation vitamin D and BMD. The negative findings 

have shown that perception that vitamin D works directly on bone cells to promote 

mineralization is probably incorrect. Thus, the continued widespread use of vitamin D 

supplements as a treatment or protective measure for osteoporosis in community-

dwelling adults without specific risk factors for vitamin D deficiency seems to be 

inappropriate (Reid et al., 2014). 
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Moving on to the genomic data, in the past few years, the bone field has 

witnessed great advances in genome-wide association studies (GWASs) of 

osteoporosis, with a number of promising genes identified. Many of the identified 

proteins in GWAS of osteoporosis have clear and relevant mechanisms of action for 

osteoporosis pathophysiology. In Qatar, we performed the first GWA study of 

Osteoporosis in the Arab countries to uncover the genetic risk factors associated with 

BMD and osteoporosis in the Qatari population. In addition, we conducted the first 

GWA study to include 7 BMD measurements from different parts; whole body, spine, 

pelvis, trunk, femoral parts in which the best and most accurate measurement of BMD 

is at the whole body BMD, Spine and pelvis. We included 3000 healthy Qatari 

participants aging from 18-70 years old in our study. DXA scan was conducted on all 

of the 3000 participants and BMD was measured for different parts of the body; whole 

body, spine, pelvis, trunk, femoral upper neck, femoral troch and femoral ward. Our 

study is the first study to include this wide range of different BMD measurements in a 

GWA study of osteoporosis.  

Our study identified 19 common variants associated with BMD at a genome-

wide significance P<5×10−8. 6 SNPs were previously reported by GWAS of UK 

BioBank cohort and GEFOS cohort. 2 of these SNPs are located in 7q31.31 locus 

overlapping WNT16 and FAM3C genes. WNT signaling pathway plays a critical role 

in bone formation and remolding.  The third SNP is found on chromosome 7 as well in 

the p14.1 locus, overlapping the SFRP4 gene. SFRP protein act as a soluble mediator 

in the WNT signaling, thus, critical for bone biological functions. The last three SNPs 

that were replicated in our study; 2 SNPs were located in chromosome 18 in locus 
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q21.33 overlapping the PIGN gene and one SNP in locus 21q12.1, overlapping the 

CRYBB2P1. However, those three SNPs were reported by the UK biobank to be 

associated with several traits including the physical phenotype.  

We identified 13 novel SNPs to be associated with BMD of Whole body, Spine, 

Pelvis, Trunk, and Femur (Torch, Ward and Neck) at a genome-wide significance 

P<5×10−8 that weren’t reported previously. 8 of these variants were intronic variants 

harbored in 8 gene loci; MALAT1, SAG, MRPL39, FASLG, FAM189A2, RP11-15A1.7, 

LSAMP, and BMPR1B. One variant is a splice variant and the remaining 4 variants were 

intergenic variants.  

One limitation of our study is that we included participants from age 18- 70 

years old. Estrogen has a large effect on BMD and fracture in females. Having female 

participants after menopause should be excluded to avoid any confounding factors in 

our study. Our results should be validated in a cohort with younger age groups suffering 

from low BMD. 

In conclusion, our findings highlight the highly polygenic and complex nature 

underlying BMD variation, shedding light on the pathophysiological mechanisms 

underlying fracture susceptibility and harboring potential for the future identification 

of drug targets for the treatment of osteoporosis. In addition, the risk alleles we have 

identified in our GWA study justify the need for further clinical and biological 

investigations. Proteins identified and prioritized by our study have identified signaling 

pathways that represent new drug targets for the prevention and treatment of 

osteoporosis- a major health care priority. These SNPs alone are unlikely to change 
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current clinical practice, but as has been shown for other diseases (Maller et al., 

2006) extended panels of several SNP markers could be used in the future, in addition 

to traditional risk factors, to better identify populations who are at high risk for 

osteoporotic fractures.  

The findings of new genetic variants that are not previously described in GWAS 

studies to be related to BMD variants is of major importance and open horizons for new 

studies to investigate the molecular mechanisms of a potential relation between 

MALT1, FASL, and MRPL39 and bone remodeling and development. For future 

studies, we will conduct a replication study using an independent cohort and will do 

fine mapping of the association signals in the identified LD regions. In addition, we 

will conduct in in Silico Analysis of the functional and structural consequences of the 

novel identified SNPs to find out its molecular mechanism in the bone remodeling and 

osteogenesis process.  
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