15,050 research outputs found
A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems
Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations
Dipolar effect in coherent spin mixing of two atoms in a single optical lattice site
We show that atomic dipolar effects are detectable in the system that
recently demonstrated two-atom coherent spin dynamics within individual lattice
sites of a Mott state. Based on a two-state approximation for the two-atom
internal states and relying on a variational approach, we have estimated the
spin dipolar effect. Despite the absolute weakness of the dipole-dipole
interaction, it is shown that it leads to experimentally observable effects in
the spin mixing dynamics.Comment: 4 pages, 3 color eps figures, to appear in Phys. Rev. Let
Suppression of the superconducting energy gap in intrinsic Josephson junctions of single crystals
We have observed back-bending structures at high bias current in the
current-voltage curves of intrinsic Josephson junctions. These structures may
be caused by nonequilibrium quasiparticle injection and/or Joule heating. The
energy gap suppression varies considerably with temperature. Different levels
of the suppression are observed when the same level of current passes through
top electrodes of different sizes. Another effect which is seen and discussed,
is a super-current ``reentrance'' of a single intrinsic Josephson junction with
high bias current.Comment: accepted by Supercond. Sci. and Tech., 200
Reconstruction of the phase of matter-wave fields using a momentum resolved cross-correlation technique
We investigate the potential of the so-called XFROG cross-correlation
technique originally developed for ultrashort laser pulses for the recovery of
the amplitude and phase of the condensate wave function of a Bose-Einstein
condensate. Key features of the XFROG method are its high resolution,
versatility and stability against noise and some sources of systematic errors.
After showing how an analogue of XFROG can be realized for Bose-Einstein
condensates, we illustrate its effectiveness in determining the amplitude and
phase of the wave function of a vortex state. The impact of a reduction of the
number of measurements and of typical sources of noise on the field
reconstruction are also analyzed.Comment: 7 pages; 9 figures; article with higher resolution figures available
from author
Mesoscopic circuits with charge discreteness:quantum transmission lines
We propose a quantum Hamiltonian for a transmission line with charge
discreteness. The periodic line is composed of an inductance and a capacitance
per cell. In every cell the charge operator satisfies a nonlinear equation of
motion because of the discreteness of the charge. In the basis of one-energy
per site, the spectrum can be calculated explicitly. We consider briefly the
incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.
Self-consistent models of triaxial galaxies in MOND gravity
The Bekenstein-Milgrom gravity theory with a modified Poisson equation is
tested here for the existence of triaxial equilibrium solutions. Using the
non-negative least square method, we show that self-consistent triaxial
galaxies exist for baryonic models with a mild density cusp . Self-consistency is achieved for a wide range of central
concentrations, , representing
low-to-high surface brightness galaxies. Our results demonstrate for the first
time that the orbit superposition technique is fruitful for constructing galaxy
models beyond Newtonian gravity, and triaxial cuspy galaxies might exist
without the help of Cold dark Matter.Comment: 19 pages, 1 table, 7 figures, Accepted for publication in Ap
A systematic evaluation of hybridization-based mouse exome capture system
BACKGROUND: Exome sequencing is increasingly used to search for phenotypically-relevant sequence variants in the mouse genome. All of the current hybridization-based mouse exome capture systems are designed based on the genome reference sequences of the C57BL/6 J strain. Given that the substantial sequence divergence exists between C57BL/6 J and other distantly-related strains, the impact of sequence divergence on the efficiency of such capture systems needs to be systematically evaluated before they can be widely applied to the study of those strains. RESULTS: Using the Agilent SureSelect mouse exome capture system, we performed exome sequencing on F1 generation hybrid mice that were derived by crossing two divergent strains, C57BL/6 J and SPRET/EiJ. Our results showed that the C57BL/6 J-based probes captured the sequences derived from C57BL/6 J alleles more efficiently and that the bias was higher for the target regions with greater sequence divergence. At low sequencing depths, the bias also affected the efficiency of variant detection. However, the effects became negligible when sufficient sequencing depth was achieved. CONCLUSION: Sufficient sequence depth needs to be planned to match the sequence divergence between C57BL/6 J and the strain to be studied, when the C57BL/6 J --based Agilent SureSelect exome capture system is to be used
Variational perturbation approach to the Coulomb electron gas
The efficiency of the variational perturbation theory [Phys. Rev. C {\bf 62},
045503 (2000)] formulated recently for many-particle systems is examined by
calculating the ground state correlation energy of the 3D electron gas with the
Coulomb interaction. The perturbation beyond a variational result can be
carried out systematically by the modified Wick's theorem which defines a
contraction rule about the renormalized perturbation. Utilizing the theorem,
variational ring diagrams of the electron gas are summed up. As a result, the
correlation energy is found to be much closer to the result of the Green's
function Monte Carlo calculation than that of the conventional ring
approximation is.Comment: 4 pages, 3 figure
- …