23,254 research outputs found
Quasilinear approach of the cumulative whistler instability in fast solar winds: Constraints of electron temperature anisotropy
Context. Solar outflows are a considerable source of free energy which
accumulates in multiple forms like beaming (or drifting) components and/or
temperature anisotropies. However, kinetic anisotropies of plasma particles do
not grow indefinitely and particle-particle collisions are not efficient enough
to explain the observed limits of these anisotropies. Instead, the
self-generated wave instabilities can efficiently act to constrain kinetic
anisotropies, but the existing approaches are simplified and do not provide
satisfactory explanations. Thus, small deviations from isotropy shown by the
electron temperature () in fast solar winds are not explained yet.
Aims. This paper provides an advanced quasilinear description of the whistler
instability driven by the anisotropic electrons in conditions typical for the
fast solar winds. The enhanced whistler-like fluctuations may constrain the
upper limits of temperature anisotropy ,
where are defined with respect to the magnetic field
direction.
Methods. Studied are the self-generated whistler instabilities, cumulatively
driven by the temperature anisotropy and the relative (counter)drift of the
electron populations, e.g., core and halo electrons. Recent studies have shown
that quasi-stable states are not bounded by the linear instability thresholds
but an extended quasilinear approach is necessary to describe them in this
case.
Results. Marginal conditions of stability are obtained from a quasilinear
theory of the cumulative whistler instability, and approach the quasi-stable
states of electron populations reported by the observations.The instability
saturation is determined by the relaxation of both the temperature anisotropy
and the relative drift of electron populations.Comment: Accepted for publication in A&
N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei
We examine the effects of the additional term of the type on the recently proposed empirical formula for the lowest excitation
energy of the states in even-even nuclei. This study is motivated by the
fact that this term carries the favorable dependence of the valence nucleon
numbers dictated by the scheme. We show explicitly that there is not
any improvement in reproducing by including the extra
term. However, our study also reveals that the excitation energies
, when calculated by the term alone (with the mass number
dependent term), are quite comparable to those calculated by the original
empirical formula.Comment: 14 pages, 5 figure
Nonlinear Development of Streaming Instabilities In Strongly Magnetized Plasmas
The nonlinear development of streaming instabilities in the current layers
formed during magnetic reconnection with a guide field is explored. Theory and
3-D particle-in-cell simulations reveal two distinct phases. First, the
parallel Buneman instability grows and traps low velocity electrons. The
remaining electrons then drive two forms of turbulence: the parallel
electron-electron two-stream instability and the nearly-perpendicular lower
hybrid instability. The high velocity electrons resonate with the turbulence
and transfer momentum to the ions and low velocity electrons.Comment: Accepted by PR
Particle-in-cell and weak turbulence simulations of plasma emission
The plasma emission process, which is the mechanism for solar type II and
type III radio bursts phenomena, is studied by means of particle-in-cell and
weak turbulence simulation methods. By plasma emission, it is meant as a loose
description of a series of processes, starting from the solar flare associated
electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent
partial conversion of beam energy into the radiation energy by nonlinear
processes. Particle-in-cell (PIC) simulation is rigorous but the method is
computationally intense, and it is difficult to diagnose the results. Numerical
solution of equations of weak turbulence (WT) theory, termed WT simulation, on
the other hand, is efficient and naturally lends itself to diagnostics since
various terms in the equation can be turned on or off. Nevertheless, WT theory
is based upon a number of assumptions. It is, therefore, desirable to compare
the two methods, which is carried out for the first time in the present paper
with numerical solutions of the complete set of equations of the WT theory and
with two-dimensional electromagnetic PIC simulation. Upon making quantitative
comparisons it is found that WT theory is largely valid, although some
discrepancies are also found. The present study also indicates that it requires
large computational resources in order to accurately simulate the radiation
emission processes, especially for low electron beam speeds. Findings from the
present paper thus imply that both methods may be useful for the study of solar
radio emissions as they are complementary.Comment: 21 pages, 9 figure
Source mechanism of Saturn narrowband emission
Narrowband emission (NB) is observed at Saturn centered near 5 kHz and 20 kHz
and harmonics. This emission appears similar in many ways to Jovian
kilometric narrowband emission observed at higher frequencies, and therefore
may have a similar source mechanism. Source regions of NB near 20 kHz are
believed to be located near density gradients in the inner magnetosphere and
the emission appears to be correlated with the occurrence of large neutral
plasma clouds observed in the Saturn magnetotail. In this work we present
the results of a growth rate analysis of NB emission (~20 kHz) near or
within a probable source region. This is made possible by the sampling of
in-situ wave and particle data. The results indicate waves are likely to be
generated by the mode-conversion of directly generated Z-mode emission to
O-mode near a density gradient. When the local hybrid frequency is close <I>n</I>
<I>f</I><sub>ce</sub> (<I>n</I> is an integer and <I>f</I><sub>ce</sub> is the electron cyclotron frequency)
with <I>n</I>=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary
(O-mode) emission can be directly generated by the cyclotron maser
instability
Comment on ``Dispersion-Independent High-Visibility Quantum Interference ... "
We show in this Comment that the interpretation of experimental data as well
as the theory presented in Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)]
are incorrect and discuss why such a scheme cannot be used to "recover"
high-visibility quantum interference.Comment: Comment on Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)], 2nd
revision, To appear in Phys. Rev. Lett. April, (2001
- …