82 research outputs found

    Encapsulation of pentacene/C₆₀ organic solar cells with Al₂O₃ deposited by atomic layer deposition

    Get PDF
    © 2007 American Institute of Physics. The electronic version of this article is the complete one and can be found at: http://dx.doi.org/10.1063/1.2751108DOI: 10.1063/1.2751108Organic solar cells based on pentacene/C₆₀ heterojunctions were encapsulated using a 200-nm-thick film of Al₂O₃ deposited by atomic layer deposition (ALD). Encapsulated devices maintained power conversion efficiency after exposure to ambient atmosphere for over 6000 h, while devices with no encapsulation degraded rapidly after only 10 h of air exposure. In addition, thermal annealing associated with the ALD deposition is shown to improve the open-circuit voltage and power conversion efficiency of the solar cells

    A 2D Titanium Carbide MXene Flexible Electrode for High-Efficiency Light-Emitting Diodes

    Get PDF
    © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimAlthough several transparent conducting materials such as carbon nanotubes, graphene, and conducting polymers have been intensively explored as flexible electrodes in optoelectronic devices, their insufficient electrical conductivity, low work function, and complicated electrode fabrication processes have limited their practical use. Herein, a 2D titanium carbide (Ti3C2) MXene film with transparent conducting electrode (TCE) properties, including high electrical conductivity (≈11 670 S cm−1) and high work function (≈5.1 eV), which are achieved by combining a simple solution processing with modulation of surface composition, is described. A chemical neutralization strategy of a conducting-polymer hole-injection layer is used to prevent detrimental surface oxidation and resulting degradation of the electrode film. Use of the MXene electrode in an organic light-emitting diode leads to a current efficiency of ≈102.0 cd A−1 and an external quantum efficiency of ≈28.5% ph/el, which agree well with the theoretical maximum values from optical simulations. The results demonstrate the strong potential of MXene as a solution-processable electrode in optoelectronic devices and provide a guideline for use of MXenes as TCEs in low-cost flexible optoelectronic devices.

    Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Get PDF
    We report a study on transparent organic light-emitting diodes (OLEDs) with different bidirectional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(Dicyanomethylene)-2-methyl- 6-(4-dimethylaminostyryl)-4Hpyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminium (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6,000K-7,000K, with excellent color stability as evidenced by an extremely small variation in color coordinate of ∆(x,y) = (0.002, 0.002) in the forward luminance range of 100-1000 cd m-2. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDsPostprintPeer reviewe

    Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes

    Get PDF
    Metal halide perovskites (MHPs) are being widely studied as a light-absorber for high-efficiency solar cells. With efforts being made throughout the globe, the power conversion efficiency of MHP solar cells has recently soared up to 25.2%. MHPs are now being spotlighted as a next-generation light-emitter as well. Their high color purity and solution-processability are of particular interest for display applications, which in general benefit from wide color gamut and low-cost high-resolution subpixel patterning. For this reason, research activities on perovskite light-emitting diodes (LEDs) are rapidly growing, and their external quantum efficiencies have been dramatically improved to over 20%. As more and more research groups with different backgrounds are working on these perovskite optoelectronic devices, the demand is growing for standard methods for accurate efficiency measurement that can be agreed upon across the disciplines and, at the same time, can be realized easily in the lab environment with due diligence. Herein, optoelectronic characterization methods are revisited from the viewpoint of MHP solar cells and LEDs. General efficiency measurement practices are first reviewed, common sources of errors are introduced, and guidelines for avoiding or minimizing those errors are then suggested to help researchers in fields develop the best measurement practice.

    Efficient Perovskite Light-Emitting Diodes Using Polycrystalline Core-Shell-Mimicked Nanograins

    Get PDF
    Making small nanograins in polycrystalline organic-inorganic halide perovskite (OIHP) films is critical to improving the luminescent efficiency in perovskite light-emitting diodes (PeLEDs). 3D polycrystalline OIHPs have fundamental limitations related to exciton binding energy and exciton diffusion length. At the same time, passivating the defects at the grain boundaries is also critical when the grain size becomes smaller. Molecular additives can be incorporated to shield the nanograins to suppress defects at grain boundaries; however, unevenly distributed molecular additives can cause imbalanced charge distribution and inefficient local defect passivation in polycrystalline OIHP films. Here, a kinetically controlled polycrystalline organic-shielded nanograin (OSN) film with a uniformly distributed organic semiconducting additive (2,2 ',2 ''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBI) is developed mimicking core-shell nanoparticles. The OSN film causes improved photophysical and electroluminescent properties with improved light out-coupling by possessing a low refractive index. Finally, highly improved electroluminescent efficiencies of 21.81% ph el(-1) and 87.35 cd A(-1) are achieved with a half-sphere lens and four-time increased half-lifetime in polycrystalline PeLEDs. This strategy to make homogeneous, defect-healed polycrystalline core-shell-mimicked nanograin film with better optical out-coupling will provide a simple and efficient way to make highly efficient perovskite polycrystal films and their optoelectronics devices.

    Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.

    Get PDF
    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.This work was partially supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA-1402-07. A.S. was partially supported by the Engineering and Physical Sciences Research Council (UK).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Association for the Advancement of Science

    Organic solar cells based on liquid crystalline and polycrystalline thin films

    No full text
    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors.Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements.In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7 % under broadband illumination (350-900 nm) with a peak external quantum efficiency of 58 % have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using the equivalent circuit model used for inorganic pn-junction solar cells. Dependences of equivalent-circuit parameters on light intensity are further investigated using a modified equivalent circuit model, and their effects on the overall photovoltaic performance are discussed
    corecore