271 research outputs found

    Optimization of Battery Energy Storage to Improve Power System Oscillation Damping

    Full text link
    A placement problem for multiple Battery Energy Storage System (BESS) units is formulated towards power system transient voltage stability enhancement in this paper. The problem is solved by the Cross-Entropy (CE) optimization method. A simulation-based approach is adopted to incorporate higher-order dynamics and nonlinearities of generators and loads. The objective is to maximize the voltage stability index, which is setup based on certain grid-codes. Formulations of the optimization problem are then discussed. Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on the New England 39-Bus system. Results indicate that installing BESS units at the optimized location can alleviate transient voltage instability issue compared with the original system with no BESS. The CE placement algorithm is also compared with the classic PSO (Particle Swarm Optimization) method, and its superiority is demonstrated in terms of a faster convergence rate with matched solution qualities.Comment: This paper has been accepted by IEEE Transactions on Sustainable Energy and now still in online-publication phase, IEEE Transactions on Sustainable Energy. 201

    Deposition of YBCO thin films on silver substrate via a fluorine-free sol-gel synthesis

    Full text link
    To further develop grain-textured YBCO thin films for conductor development, we deposited, via a fluorine-free sol-gel synthesis, YBCO thin films on non-textured silver substrate. The interface structures were studied by both x-ray diffraction (XRD) and transmission electron microscopy (HRTEM). XRD data indicated that the YBCO films on silver substrate exhibited c-axis grain orientations. Experimental details are reported on the sol-gel synthesis chemistry and XRD and HRTEM characterization of the YBCO thin films. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87877/2/654_1.pd

    RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis

    Get PDF
    DNA sequencing has allowed for the discovery of the genetic cause for a considerable number of diseases, paving the way for new disease diagnostics. However, due to the lack of clinical samples and records, the molecular cause for rare diseases is always hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed through sequencing technologies. Clinical phenotype information therefore becomes a major resource to diagnose rare diseases. In this article, we adopted both a phenotypic similarity method and a machine learning method to build four diagnostic models to support rare disease diagnosis. All the diagnostic models were validated using the real medical records from RAMEDIS. Each model provides a list of the top 10 candidate diseases as the prediction outcome and the results showed that all models had a high diagnostic precision (≥98%) with the highest recall reaching up to 95% while the models with machine learning methods showed the best performance. To promote effective diagnosis for rare disease in clinical application, we developed the phenotype-based Rare Disease Auxiliary Diagnosis system (RDAD) to assist clinicians in diagnosing rare diseases with the above four diagnostic models. The system is freely accessible through http://www.unimd.org/RDAD/

    Interface structure of YBa2Cu3Ox thin films prepared by a non-fluorine sol–gel route on a single-domain substrate

    Full text link
    In our previous work, we have shown that a single-domain YBa2Cu3Ox (YBCO) exhibits a low surface resistance. However, the second phase Y2BaCuO5 (211) precipitates inevitably as a result of peritectic reaction. These 211 particles are potential sources of RF losses, which need to be eliminated. In this study, a non-fluorine sol–gel synthesis was developed to deposit a YBCO thin film on the surface of single-domain YBCO. The deposited YBCO thin film entirely covered the 211 particles. The interface structure was studied by high-resolution transmission electron microscopy. The experimental results on sol–gel synthesis and thin film characterization are reported. Also discussed is the underlying mechanism of film growth on single-domain YBCO.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48990/2/u20504.pd

    Rainfall variations in central Indo-Pacific over the past 2,700 y

    Get PDF
    Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niño-like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability
    corecore