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DNA sequencing has allowed for the discovery of the genetic cause for a considerable

number of diseases, paving the way for new disease diagnostics. However, due to the

lack of clinical samples and records, the molecular cause for rare diseases is always

hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed

through sequencing technologies. Clinical phenotype information therefore becomes a

major resource to diagnose rare diseases. In this article, we adopted both a phenotypic

similarity method and a machine learning method to build four diagnostic models to

support rare disease diagnosis. All the diagnostic models were validated using the real

medical records from RAMEDIS. Each model provides a list of the top 10 candidate

diseases as the prediction outcome and the results showed that all models had a high

diagnostic precision (≥98%) with the highest recall reaching up to 95% while the models

with machine learning methods showed the best performance. To promote effective

diagnosis for rare disease in clinical application, we developed the phenotype-based Rare

Disease Auxiliary Diagnosis system (RDAD) to assist clinicians in diagnosing rare diseases

with the above four diagnostic models. The system is freely accessible through http://

www.unimd.org/RDAD/.

Keywords: rare disease, phenotype, machine learning, diagnostic model, web-based tools

INTRODUCTION

Rare diseases are rare conditions that occur only in a precious few people. Currently, there is no
unified, widely accepted definition for rare diseases (Jia and Shi, 2017). To facilitate increased
communication, knowledge sharing and coordinated orphan drug development across national
borders, the World Health Organization (WHO) defines rare diseases as a prevalence >6.5–10 in
10,000 (Franco, 2013), which we adopted as the definition of rare diseases in this article. About 80%
of rare diseases are the consequence of genetic defects, but >5% of rare diseases can be effectively
interfered with or treated. Nowadays, screening and diagnostic rates of rare diseases are constantly
improved with the progress of molecular biology and cytogenetics (Ekins, 2017). For example,
whole-exome sequencing has allowed for the discovery of the genetic cause for a considerable
number of diseases, opening up new ways for disease diagnostics, especially for OMIM (Online
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Mendelian Inheritance in Man) disorders. However, due to the
lack of clinical samples and records, the molecular causeremains
difficult to identify (Qi et al., 2017; Wu et al., 2017). Therefore,
only a limited number of rare Mendelian diseases can be
diagnosed through DNA sequencing, making clinical phenomic
information a major resource to diagnose rare diseases (Jia
and Shi, 2017). Disease phenotypes (also known as clinical
phenotypes) refer to the observable characteristics of an organism
(or cell), including individual form, function and other aspects
of performance, such as height, color, blood type and enzyme
activity. Usually, phenotypes associated with rare diseases are
described by a set of clinical medical terms. To provide better
interoperability in the field of rare diseases, several tools have
been specifically designed to assist in standardizing, and sharing
of clinical medical terms, through various medical resources
(Dragusin et al., 2013; Girdea et al., 2013; Yang et al., 2015;Maiella
et al., 2018). For example, Phenomizer aims to help diagnose
genetic diseases from the input list of symptoms and PhenoTips
provides a framework to share and analyze patient data between
professionals. At present, the main approach to support disease
diagnosis is based on disease similarities calculated from diseases’
clinical phenotypes, using a semantic hierarchy of the Human
Phenotype Ontology (HPO; Alves et al., 2016). Under this
circumstance, the similarity score between two diseases will
be highly dependent on the completeness and specificity of
their annotated phenotypes. To overcome the limitations, we
adopted both the traditional phenotypic similarity method and
a new machine learning method to build four diagnostic models
to support the diagnosis of rare diseases. We then validated
the performance of all these models using the real electronic
medical records (EMR) from RAMEDIS. To promote effective
diagnosis of rare diseases in a clinical application, we developed
the phenotype-based Rare Disease Auxiliary Diagnosis system
(RDAD) to assist clinicians in diagnosing rare diseases using the
above four diagnostic models.

MATERIALS AND METHODS

The workflow of the RDAD is depicted in Figure 1. The data
sets for the four diagnostic models contained in the RDAD were
integrated from eRAM (Jia et al., 2018a), Human Phenotype
Ontology (Robinson et al., 2008), Orphanet (Pavan et al., 2017),
OMIM (Amberger et al., 2014), and DECIPHER (Firth et al.,
2009). To integrate multi-level biomedical resources andmultiple
classifiers, we built four diagnostic models. The phenotype
based rare disease similarity (PICS) model used curated rare
disease-phenotype associations as the input data and four disease
similarity methods as the classifiers, while the phenotype-
gene based rare disease similarity (PGAS) model used curated
rare disease-phenotype associations and curated phenotype-
gene associations as the input data and two disease similarity
methods as the classifiers. In contrast, the phenotype based
machine learning (CPML) model used curated rare disease-
phenotype associations as the input data and six machine
learning algorithms as the classifiers; similarly, the curated and
text-mined phenotype based machine learning (APML) model

used curated rare disease-phenotype associations and text mined
(Xu et al., 2013) rare disease-phenotype associations as the input
data and six machine learning algorithms as the classifiers. The
four different diagnostic models contained in the RDAD system,
with their input data sets and classifiers are listed in Table 1.

Extraction of Phenotypes and
Corresponding Genes
Rare disease names were extracted from eRAM, the rare
disease-phenotype associations were extracted from HPO and
eRAM, rare disease related genes were mainly collected from
eRAM. eRAM is a standardized system that covers a variety
of rare diseases, integrates current existing data on clinical
manifestations (symptoms and phenotypes) and molecular
mechanisms of rare diseases systematically, revealing many novel
associations between rare diseases (Jia et al., 2018a). The HPO
is a system providig a standardized vocabulary of phenotypic
abnormalities that are encountered in human disease (Robinson
et al., 2008). We first obtained rare disease names from eRAM,
then extracted curated rare disease-phenotype associations
from the annotation files (phenotype_annotation_hpoteam.tab,
#1249) provided by HPO, which contains annotations made
explicitly and manually by the HPO-team (mostly referring
to OMIM entries). In addition, we retrieved the rare disease-
phenotype pairs from eRAM in which the related records were
extracted from abstracts and full-text articles in MEDLINE,
through a pattern-based relationship extraction approach (Xu
et al., 2013). In total, 8,488,796 abstracts and 774,514 full-
text articles were text-mined, respectively, from PubMed and
PubMed Central, which lead to the identification of 23,231 rare
disease-phenotype pairs.

Electronic Health Records
RAMEDIS (Rare Metabolic Diseases Database) provides
an accurate curated resource of human variations with
corresponding phenotypes for rare metabolic diseases (Topel
et al., 2010). So far, 93 different genetic metabolic diseases among
818 patients have been released. PhenoTips is an open source
framework for analyzing phenotype information for patients
with genetic diseases (Girdea et al., 2013). We downloaded
all 1,099 medical records from RAMEDIS, and then obtained
818 related records according to the mapping between the
diagnostic disease names of medical records (rare disease
names were standardized by eRAM). According to the historical
description and symptom fields in the medical records, the
corresponding phenotypic data from the medical records were
extracted with the open source software PhenoTips. Finally, 309
phenotypes were obtained, involving 27 rare diseases, which
were subsequently used as the real medical records-based test set
for the four different diagnosis models contained in RDAD. The
test set extracted from RAMEDIS is listed in Table 2.

The PICS Diagnostic Model
The input data of the PICS diagnostic model were the curated
rare disease-phenotype associations, and we selected the curated
phenotypes as the features. Cosine similarity is defined as the
evaluation of the similarity between two vectors by calculating
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FIGURE 1 | The workflow of RDAD. HPO, Human Phenotype Ontology. OMIM, Online Mendelian Inheritance in Man. PGAS, Phenotype-Gene Association based rare

disease similarity model; PICS, Phenotypic TF-IDF-Hierarchy information content based rare disease similarity model; CPML, Curated feature Phenotype spatial vector

based rare disease Machine Learning prediction model; APML, Curated and text mined feature phenotype spatial vector based rare disease Machine Learning

prediction model.

TABLE 1 | The Four Diagnostic Models Contained in the RDAD System.

Data sources Model

PICS PGAS CPML APML

HPO Phenotypes
√ √ √ √

eRAM Curated Genes
√

eRAM Text Mined Phenotypes
√

Disease Similarity Classifiers
√ √

Machine Learning Classifiers
√ √

the value of the angle cosine. The similarity between the two
vectors of the same vector cosine is 1, and the similarity of the
two vectors at 90 degrees is 0. If the two vectors are the opposite,
the similarity is−1. Cosine similarity is used in the positive space
and the value is to be neatly bound in [0,1] (Jia et al., 2018b).
Given two feature phenotype spatial vectors,D = (p1, p2, . . . , pn),
Q = (q1, q2, . . . , qn), the cosine similarity is represented using a
dot product and magnitude as follows:

Cosine_similarity =
D∗Q

‖ D ‖ ∗ ‖ Q ‖

=
∑n

i=1 (Di∗Qi)
√

∑n
i=1 (Di)

2∗
√

∑n
i=1 (Qi)

2

The Tanimoto coefficient is extended by the Jaccard coefficient.
Given two feature phenotype spatial vectors,D = (p1, p2, . . . , pn),
Q = (q1, q2, . . . , qn), the Tanimoto coefficient is calculated as
follows:

Tanimoto(D,Q) =
D∗Q

‖ D ‖2 + ‖ Q ‖2 − D∗Q

To provide an antidiastole and to rank the candidate rare diseases
in descending order of probability, the score is calculated as
follows (Pinol et al., 2017):

9i = 1−
n

Max[Pu, Pi]

Where Pu indicates the phenotypes provided by the user, Pi
indicates the phenotypes of rare diseases in the training set, the
function of Max[Pu, Pi] refers to the largest number between Pu
and Pi. n signifies the number of different phenotypes between
the phenotypes associated with any rare disease in the RDAD
database and the phenotypes submitted by the user.
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TABLE 2 | The Test Data Set for the Four Diagnostic Models.

Diagnosis Case

count

PHENYLKETONURIA (MIM 261600) 157

CONGENITAL DISORDER OF GLYCOSYLATION, TYPE Ia (MIM

212065)

27

MAPLE SYRUP URINE DISEASE (MIM 248600) 21

PROPIONIC ACIDEMIA (MIM 606054) 16

CANAVAN DISEASE (MIM 271900) 15

SUCCINIC SEMIALDEHYDE DEHYDROGENASE DEFICIENCY

(MIM 271980)

10

ALKAPTONURIA (MIM 203500) 10

ARGININOSUCCINIC ACIDURIA (MIM 207900) 9

ISOVALERIC ACIDEMIA (MIM 243500) 7

CYSTINURIA (MIM 220100) 5

CITRULLINEMIA, TYPE II, NEONATAL-ONSET (MIM 605814) 5

WILSON DISEASE (MIM 277900) 4

HOLOCARBOXYLASE SYNTHETASE DEFICIENCY (MIM 253270) 4

FANCONI-BICKEL SYNDROME (MIM 227810) 2

ALPHA-METHYLACETOACETIC ACIDURIA (MIM 203750) 2

TYROSINE TRANSAMINASE DEFICIENCY (MIM 276600) 2

HYPERINSULINEMIC HYPOGLYCEMIA, FAMILIAL, 2 (MIM

601820)

2

HAWKINSINURIA (MIM 140350) 2

OSTEOGENESIS IMPERFECTA, TYPE I (MIM 166200) 1

GLYCOGEN STORAGE DISEASE VI (MIM 232700) 1

N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY (MIM 237310) 1

REFSUM DISEASE (MIM 266500) 1

KRABBE DISEASE (MIM 245200) 1

LEIGH SYNDROME (MIM 256000) 1

GLYCOGEN STORAGE DISEASE Ib (MIM 232220) 1

PYRUVATE CARBOXYLASE DEFICIENCY (MIM 266150) 1

PEARSON MARROW-PANCREAS SYNDROME (MIM 557000) 1

The similarity between two phenotypes can be calculated by
the “information content” of their MICA (Most Informative
Common Ancestor; Kohler et al., 2009). For each of the
phenotypes submitted by the user, the best matched phenotype
among the phenotypes related to the rare disease is found, and
the average value over all the query phenotypes is then calculated.
The similarity is calculated as follows:

Similarity (Q → D) = avg





∑

p1∈Q

max
p2∈D IC

(

MICA
(

p1, p2
))





The symmetric version of the above equation is:

Similaritysymmetric (D,Q) =
1

2
Similarity (Q → D)

+
1

2
Similarity (D → Q)

Based on the TF-IDF-Hierarchy information content (van Driel
et al., 2006) matrix of rare disease associated phenotype spatial

vector obtained from Data Set I, we used the above methods to
construct the PICS model.

The PGAS Diagnostic Model
The input data of the PGAS diagnostic model were the curated
rare disease-phenotype associations and the curated phenotype-
gene associations, and we selected the curated genes and curated
phenotypes as the features.

Given two feature gene spatial vectors, G = (g1, g2, . . . , gn),
Q = (q1, q2, . . . , qn), the cosine similarity, is represented using a
dot product as follows:

Cosine_similarity =
G∗Q

‖ G ‖ ∗ ‖ Q ‖

=
∑n

i=1 (Gi∗Qi)
√

∑n
i=1 (Gi)

2∗
√

∑n
i=1 (Qi)

2

Given two feature gene spatial vectors, G = (g1, g2, . . . , gn),
Q = (q1, q2, . . . , qn), the Tanimoto coefficient, is represented as
follows:

Tanimoto(G,Q) =
G∗Q

‖ G ‖2 + ‖ Q ‖2 − G∗Q

Given two phenotype sets, P1 = (p1, p2, . . . , pm), P2 =
(p1, p2, . . . , pn), the similarities between two phenotype sets are
defined as follows:

Similaritysymmetric (P1, P2) =
1

2
Similarity (P1 → P2)

+
1

2
Similarity (P2 → P1)

Based on the rare disease associated phenotype-gene spatial
vector obtained from Data Set II, we used the above methods to
construct the PGAS model.

The CPML Diagnostic Model and the APML
Diagnostic Model
The input data of the CPML diagnostic model were the
curated rare disease-phenotype associations, and we selected
the curated phenotypes as the features. Similarly, the input
data of the APML diagnostic model were the curated rare
disease-phenotype associations and the text mined rare disease-
phenotype associations, and we selected the curated phenotypes
and text mined phenotypes as the features.

Based on the TF-IDF-Hierarchy information content matrix
of rare disease associated phenotype spatial vector obtained
from Data Set III and Data Set IV, the CPML model, and the
APML model take classifier performance into consideration. We
first adopted Logistic Regression, KNN, Random Forest, Extra
Trees, Naive Bayes, and Deep Neural Network machine learning
classification algorithms as classifiers, respectively, and then used
the Bayesian averaging algorithm in both models to leverage the
prediction results of the six classifiers, ranking candidate rare
diseases by their scores.
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The Data Sets for the Four Diagnostic
Models Contained in the RDAD System
The training sets for the four diagnostic models contained in the
RDAD system are listed in Table 3. All rare diseases in the four
training data sets were regarded as model labels. The phenotypes
in Data Set I/III/VI were used to calculate the phenotypic TF-
IDF-Hierarchy information content, based on the phenotype
semantic hierarchy of HPO. The genes in Data Set II were used
to calculate phenotype similarity and the phenotypes in Data
Set II were used to calculate the rare disease similarity based
on the phenotype similarity in the PGAS model. The records in
Data III/IV were used as the input data for the machine learning
classifiers in the CPML model and the APML model.

The Four Diagnostic Models in the RDAD
System With Their Corresponding
Classifiers
To facilitate rare disease diagnosis, we applied the phenotypic TF-
IDF-Hierarchy information content on the phenotype semantic
hierarchy of Human Phenotype Ontology (HPO), and then built
the phenotypic TF-IDF-Hierarchy information content based
on the rare disease similarity model (PICS), the phenotype-
gene association based rare disease similarity model (PGAS),
and the curated feature phenotype spatial vector based rare
disease machine learning prediction model (CPML), as well as
the curated and text mined feature phenotype spatial vector
based rare disease machine learning prediction model (APML).
The four diagnostic models contained in RDAD with their
corresponding classifiers are listed in Table 4.

TABLE 3 | The Training Data Sets for the Four Diagnostic Models.

Data set Model Term Term count

Data Set I PICS Rare Diseases 4,498

Curated Phenotypes 5,990

D-P Associations 57,346

Data Set II PGAS Rare Diseases 4,498

Curated Phenotypes 5,990

D-P Associations 57,346

Curated Genes 3,682

P-G Associations 419,597

Data Set III CPML Rare Diseases 4,498

Curated Phenotypes 5,990

D-P Associations 57,346

Synthetic Patients 44,980

Data Set IV APML Rare Diseases 4,498

All Phenotypes 6,453

D-P Associations 72,404

Synthetic Patients 44,980

D-P Associations, Disease-Phenotype association pairs; P-G Associations, Phenotype-

Gene association pairs.

Precision and Recall
Precision measures the fraction of correct predictions made by
the four diagnostic models contained in the RDAD system.
Recall (or specificity)measures the fraction calculated by dividing
the number of correct choices by the total number of choices
available to each model. True positives (TP) are the number
of correctly predicted rare diseases, false positives (FP) are the
number of incorrectly predicted rare diseases and false negatives
(FN) are the number of rare diseases that are not predicted. The
F1-score is an aggregate measure for the accuracy of a classifier
that calculates a weighted average of Precision and Recall defined
as follows (Alves et al., 2016):

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1_Score =
Precision∗Recall

2∗
(

Precision+ Recall
)

RESULTS

Precision and Recall
We validated the above four models with the real medical
records from RAMEDIS. The results showed that the PICS
model achieved the best performance among the four models,
with only one rare disease as the outcome of the prediction
(Figure 2A), but in real application, the diagnosis result is
barely satisfactory. To better help clinicians pinpoint the

TABLE 4 | The Four Diagnostic Models with Their Corresponding Classifiers.

Model Data set Classifier Score

PICS Data Set I Cosine Similarity Bayesian Averaging Algorithm

Tanimoto Coefficient

Ψi Score

MICA

PGAS Data Set II Cosine Similarity Bayesian Averaging Algorithm

Tanimoto Coefficient

CPML Data Set III Logistic Regression Bayesian Averaging Algorithm

K-Nearest Neighbor

Random Forest

Extra Trees

Naive Bayes

Deep Neural Network

APML Data Set IV Logistic Regression Bayesian Averaging Algorithm

K-Nearest Neighbor

Random Forest

Extra Trees

Naive Bayes

Deep Neural Network

MICA, Most Informative Common Ancestor.
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FIGURE 2 | The Precision, Recall, F1-Score of Different Models. (A) The top 1 diagnostic performance. (B) The top 10 diagnostic performance. APML, the curated

and text mined feature phenotype spatial vector based rare disease machine learning prediction model. CPML, the curated feature phenotype spatial vector based

rare disease machine learning prediction model. PGAS, the phenotype-gene association based rare disease similarity model. PICS, the phenotypic TF-IDF-Hierarchy

information content based rare disease similarity model.

FIGURE 3 | The Precision Recall and F1-Score of the model with different number of Phenotypes Submitted. (A) The top 1 diagnostic performance of PICS model.

(B) The top 10 diagnostic performance of CPML model.
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right disease, we then provided a credible list of the top 10
candidate diseases as the prediction outcome, which will
help clinicians narrow down candidate diseases through
the diagnostic process. Under such circumstances, the
CPML model had the best performance (Figure 2B). In
addition, in order to achieve the best result for rare disease
diagnosis, RDAD suggests that the number of inputted
phenotype terms of each selected diagnostic model is around
15 (Figure 3). The average number of symptoms recorded
in the EMR in RAMEDIS database was 17, indicating that
the suggested number of the RDAD model (around 15) is
feasible.

Confusion Matrix
The confusion matrix is a special two-dimensional contingency
table with the same class set on two dimensions. We built
a confusion matrix of the top 10 rare disease candidates
for each model using the EMR from RAMEDIS. The
confusion matrixes of different models showed that
machine learning diagnostic models (CPML and APML)
performed better than traditional disease similarity

models (PICS and PGAS). Compared to other models,
the CPML model showed the best performance (Figure 4,
Figure S1).

Candidate Rare Diseases Rank
Given the input phenotypes, we examined the candidate rare
diseases detected, ranked as top 1, top 10 and others with the
four diagnostic models in RDAD. We found that 62.1% of the
designated rare diseases were ranked as top 1 with the PICS
model, the good performance of this model is most likely due
to the accuracy of the associated phenotype of rare diseases
and the direct calculation between the spatial vectors while
the other three models undergo a series of transformations
during data processing, resulting in information loss and error
amplification. In contrast, 95.5% of the correct rare diseases
were ranked as top 10 with the CPML model. Thus, our
results clearly demonstrate that the four diagnostic models
contained in the RDAD system are suitable for finding rare
diseases that are known to be associated with phenotypes. In
general, the model built by the machine learningmethod, showed
better performance. The four diagnostic models successfully

FIGURE 4 | The top 10 candidate rare diseases confusion matrix of the CPML model. The ylab refers to the disease names of the records, while xlab refers to the

candidate disease names provided by the diagnostic model.
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ranked the most likely candidate rare diseases in the top 10
(Figure 5).

Compared with the above results (Figures 2, 3), the result
showed that the performance of the classifiers varied in different
cases, but where similar to ensemble learning (ensemble learning
is a machine learning paradigm where multiple learners are
trained to solve the same problem). In contrast to ordinary
machine learning approaches that try to learn one hypothesis
from training data, ensemble methods try to construct a set
of hypotheses and combine them. After using the Bayesian
averaging algorithm in the fourmodels to integrate the prediction
results of their classifiers, ranking candidate rare diseases with
a score, classification results of the four diagnostic models were
stable. At the same time, the accuracy and recall rate ranked at the
top, varied significantly in the four models built by different data
or classifiers. A possible reason for this could be that every patient
more or less presents some noise phenotypes and many rare
diseases have similar phenotypes, which can interfere with the
prediction of the correct rare disease. However, misclassification
is significantly reduced when the top 10 is selected as the
cutoff value for the predictive outcome, which represents an
improvement of the reliability of the model results and is also the
designated value we recommend during real application.

DISCUSSION

Rare diseases always have a wide range of complex and diverse
phenotypes. However, clinicians always lack knowledge on rare
diseases or clinical experiences. Many rare diseases can therefore
not be accurately identified on time, and patients are most likely
to not receive an accurate diagnosis and subsequent effective
treatment. Moreover, due to the heterogeneity of rare diseases,
the lack of available clinical diagnostic tests also hinders the
timely diagnosis of corresponding diseases. Computer assisted
decision support tools have been introduced since the 1960s
(Warner, 1989), after which many algorithms were introduced,
such as Bayes classifiers (Trace et al., 1990), neural networks
(Barnett et al., 1987), rule-based systems (Miller, 1986), and
Bayesian networks (Schurink et al., 2005). In this article, we
described both the disease similarity method and the machine
learning method based diagnostic models for rare disease. We
clearly noticed that classifier performance varied in different
cases, but similar to ensemble learning, after adopting the
Bayesian averaging algorithm in the four models, integrating the
prediction results of their classifiers and ranking the candidate
rare diseases with score. At the same time, the accuracy and
recall rates for all four models built by different data or classifiers,

FIGURE 5 | The ranking distribution of the models. The ylab refers to the percentage of disease rankings, while xlab refers to the diagnostic models.
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changed significantly when ranked as the top condition, while
robustness was ensured when ranked in the top 10 conditions.
The reason for this could be that each patient will present some
“noise phenotypes,” which might interfere with the classification
of the model.

Like all the other computer aided diagnosis tools, any rare
disease not included in the corresponding model training set
cannot be predicted by each diagnostic model contained in the
RDAD. In addition, the limited real data sets (EHR/EMR) and
diverse patients in this study also restrict the performance of the
models. At present, although users are strongly recommended
to choose the CPML model in the RDAD system to assist rare
disease diagnosis, the RDAD still provides all 4 diagnostic models
as alternative to rare disease diagnosis. On the one hand, although
the current result show that machine learning models perform
better than disease similarity models, PICS performs the best in
ranking the top condition (F-1 score 0.73, Precision 0.98 and
Recall 0.62). On the other hand, the CPML model performs
better than the APML model, but the diagnosis can only be
reliable when candidate diseases have corresponding phenotypic
annotation in the HPO. For diseases that only have text mined
phenotypes, APML will be a better choice; therefore, the four
different models can complement each other under different
circumstance. It is anticipated that with the accumulation of

clinical phenotypes of rare diseases, the performance of our
models will improve gradually.
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