4,347 research outputs found

    Realizing Video Analytic Service in the Fog-Based Infrastructure-Less Environments

    Get PDF
    Deep learning has unleashed the great potential in many fields and now is the most significant facilitator for video analytics owing to its capability to providing more intelligent services in a complex scenario. Meanwhile, the emergence of fog computing has brought unprecedented opportunities to provision intelligence services in infrastructure-less environments like remote national parks and rural farms. However, most of the deep learning algorithms are computationally intensive and impossible to be executed in such environments due to the needed supports from the cloud. In this paper, we develop a video analytic framework, which is tailored particularly for the fog devices to realize video analytic service in a rapid manner. Also, the convolution neural networks are used as the core processing unit in the framework to facilitate the image analysing process

    Protein Evolution in Yeast Transcription Factor Subnetworks

    Get PDF
    When averaged over the full yeast protein–protein interaction and transcriptional regulatory networks, protein hubs with many interaction partners or regulators tend to evolve significantly more slowly due to increased negative selection. However, genome-wide analysis of protein evolution in the subnetworks of associations involving yeast transcription factors (TFs) reveals that TF hubs do not tend to evolve significantly more slowly than TF non-hubs. This result holds for all four major types of TF hubs: interaction hubs, regulatory in-degree and out-degree hubs, as well as co-regulatory hubs that jointly regulate target genes with many TFs. Furthermore, TF regulatory in-degree hubs tend to evolve significantly more quickly than TF non-hubs. Most importantly, the correlations between evolutionary rate (KA/KS) and degrees for TFs are significantly more positive than those for generic proteins within the same global protein–protein interaction and transcriptional regulatory networks. Compared to generic protein hubs, TF hubs operate at a higher level in the hierarchical structure of cellular networks, and hence experience additional evolutionary forces (relaxed negative selection or positive selection through network rewiring). The striking difference between the evolution of TF hubs and generic protein hubs demonstrates that components within the same global network can be governed by distinct organizational and evolutionary principles.National Natural Science Foundation of China (10801131, 10631070); National Science Foundation (DGE-0654108); Pharmaceutical Research and Manufacturers of America Foundation (Research Starter Grant in Informatics); K. C. Wong Education Foundatio

    Negative entanglement measure for bipartite separable mixed states

    Full text link
    We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of t/Ut/U changes from zero to negative on approaching the critical point of quantum phase transition.Comment: 6 pages, 3 figure
    corecore