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ABSTRACT

When averaged over the full yeast protein–protein
interaction and transcriptional regulatory networks,
protein hubs with many interaction partners or regu-
lators tend to evolve significantly more slowly due to
increased negative selection. However, genome-
wide analysis of protein evolution in the subnet-
works of associations involving yeast transcription
factors (TFs) reveals that TF hubs do not tend to
evolve significantly more slowly than TF non-hubs.
This result holds for all four major types of TF hubs:
interaction hubs, regulatory in-degree and out-
degree hubs, as well as co-regulatory hubs that
jointly regulate target genes with many TFs.
Furthermore, TF regulatory in-degree hubs tend to
evolve significantly more quickly than TF non-hubs.
Most importantly, the correlations between
evolutionary rate (KA/KS) and degrees for TFs are
significantly more positive than those for generic
proteins within the same global protein–protein
interaction and transcriptional regulatory networks.
Compared to generic protein hubs, TF hubs operate
at a higher level in the hierarchical structure of
cellular networks, and hence experience additional
evolutionary forces (relaxed negative selection or
positive selection through network rewiring). The
striking difference between the evolution of TF
hubs and generic protein hubs demonstrates that
components within the same global network can
be governed by distinct organizational and evolu-
tionary principles.

INTRODUCTION

In recent years, the focus of genomic research has shifted
from the generation of a biological ‘parts list’ to

understanding how interactions among these biological
parts lead to the collective behavior of the entire cellular
system. Central to this research paradigm is the concerted
experimental and computational efforts to accurately map
the genome-wide protein networks in various organisms,
and to study the relationships between structure, function
and evolution at the level of networks (1). In particular, a
fundamental goal of the emerging field of evolutionary
systems biology is to elucidate the universal relationships
between a protein’s evolutionary rate and its role in
cellular networks (2,3).
A well-known example in evolutionary systems biology

is the discovery that hubs in the Saccharomyces cerevisiae
protein–protein interaction network tend to evolve more
slowly than non-hubs (4). While this trend is generally
accepted, the underlying mechanistic explanation—i.e.
that more interaction partners lead to an increase in struc-
tural and/or functional constraint—has been intensely
debated (5–9). This controversy stems from issues of in-
complete coverage and specific biases in experimental
interaction networks, as well as confounding correlates
of evolutionary rate such as protein abundance (10), es-
sentiality (11) and structure (12). More recently,
sophisticated multivariate analyses have been applied to
modeling the evolutionary effects of multiple genomic
properties simultaneously (13–18). Protein abundance
consistently appears as the dominant influencing factor
in protein evolution, most likely due to selection
pressure on the rate and accuracy of protein synthesis
and folding (19). On the other hand, a protein’s number
of interaction partners exerts some influence on its evolu-
tionary rate that is independent of its abundance (15,17),
most likely due to increased structural co-evolutionary
constraints (negative selection) imposed by protein–
protein interaction (20). Collectively, this work illustrates
the potential power of biomolecular network analyses in
revealing the large-scale organizational and evolutionary
principles of a cell.
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Many network-based studies focus on graph theoretical
analysis of nodes and edges within a single, global
biomolecular network. However, there exists a high level
of chemical and functional heterogeneity within the
underlying biomolecules, biomolecular interactions and
interaction subnetworks (20–24). It remains an open
question whether or not the global properties of the full
interaction network extend to these subnetworks. In
addition, subnetworks may exhibit unique, emergent
properties that are absent in the conglomeration of the
full interaction network.
In this article, we study evolutionary principles in the

subnetworks of associations involving yeast transcription
factors (TFs). TFs are important regulators of cellular
processes at the transcriptional level. The interactions
and coordinated actions of multiple TFs provide a
primary mechanism for achieving fine-tuned transcrip-
tional control in eukaryotes. A previous analysis of the
yeast transcriptional regulatory network failed to detect
significant correlations between evolutionary rate and
several measures of degree (25). A more recent analysis
reported a significant, positive correlation between evolu-
tionary rate and regulatory in-degree for TFs (26).
However, neither of these studies directly compared the
evolutionary behavior of TFs and generic proteins within
the same global protein–protein interaction/transcription-
al regulatory network. Here, we present strong evidence
that the interaction of TFs evolves significantly differently
from the interaction of generic proteins, and that the regu-
lation of TFs evolves significantly differently from the
regulation of generic proteins. We explore theoretical ex-
planations for these empirical observations based on
relaxed negative selection as well as additional positive
selection acting on TF hubs.

MATERIALS AND METHODS

Collecting datasets

Information on yeast TFs was downloaded primarily from
the Yeast Search for Transcriptional Regulators And
Consensus Tracking database (YEASTRACT; http://
www.yeastract.com) (27). Their dataset (October 2007)
contains 170 TFs, and we manually added 4 TFs annotated
in the Saccharomyces Genome Database (28). In
Supplementary Table S1, we list all 174 TFs by name, evo-
lutionary rates, number of interactors (degree) in the
protein–protein interaction network, number of regulators
(in-degree) and number of targets (out-degree) in the tran-
scriptional regulatory network, as well as number of co-
regulatory relationships (degree) in the co-regulatory
network.
Yeast physical protein–protein interaction data were

downloaded from BioGRID (version 2.0.41) (29). There
are a total of 4899 proteins and 37 814 interactions.
Transcriptional regulatory data were assembled based on
associations between TFs and target genes (TGs) as
detected by large-scale ChIP-chip experiments in
(30–35). In total, there are 143 TFs, 4774 TGs and
16 656 transcriptional regulations. Finally, we collected

additional TF–TG associations as annotated in the
YEASTRACT database.

Reconstructing the TF co-regulatory network

We constructed TF co-regulatory networks by
enumerating all TF pairs where there is a significant
overlap of TGs (24). Cooperative TFs tend to share
more common TGs in the transcriptional regulatory
network than expected by chance (36). We developed
two scores, a P-value score and an enrichment score, to
assess the significance of TG overlap for a pair of TFs.
These two scores are further combined as a single TG
overlap score for defining the co-regulatory relationship
of TF pairs.

To determine whether the TG overlap is statistically
significant for a given TF pair, we fix the total number
of TGs in the yeast genome (N), the number of TGs
regulated by the first TF (N1) and the number of TGs
regulated by the second TF (N2). We then treat the
number of TGs regulated by both TFs as a random
variable X. Under the null hypothesis that regulation by
the first TF is independent of regulation by the second TF,
X follows a hypergeometric distribution:

PðX ¼ iÞ ¼

N1

i

� �
N�N1

N2�i

� �

N
N2

� �

From here we can calculate a P-value score, which is
defined as the probability that the TG overlap would
assume a value greater than or equal to the observed
value, m, by chance:

PðX � mÞ ¼ 1�
Xm�1
i¼0

PðX ¼ iÞ

The TG overlap is statistically significant if the P-value
score is smaller than a chosen cutoff.

The above procedure gives us all TF pairs for which the
TG overlap is statistically significant. To further quantify
the extent of the TG overlap, we also calculate an enrich-
ment score, defined as the ratio of the observed TG
overlap versus the expected TG overlap by chance:

F ¼
Nm

N1N2

A score larger than 1 indicates that there is more TG
overlap than expected by chance.

We select all TF pairs for which both P-value and en-
richment scores are significant (P-value< 10�3, enrich-
ment score >2). In total, this TF co-regulatory network
contains 143 TFs and 1165 co-regulatory TF pairs.

Calculating measures of protein evolution in yeast

KA/KS represents the ratio of the rate of non-synonymous
substitutions (KA) to the rate of synonymous substitutions
(KS), and serves as a measure of the strength of selection
acting on a protein-coding gene (37). We performed local
alignment (38) between each translated S. cerevisiae open
reading frame (ORF) and its annotated ortholog(s) in
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S. paradoxus, the closest related yeast with a sequenced
genome, using the orthology information defined by
Wapinski et al. (39). Only the most conserved ortholog
was considered for yeast ORFs with multiple annotated
orthologs. These protein-level alignments were used to
generate corresponding DNA codon alignments, which
were then piped into the program yn00 within the
PAML software package (40) to calculate KA/KS; values
reported are based on the method of (41). These proced-
ures were repeated to calculate KA/KS from two additional
paired comparisons of S. cerevisiae and S. paradoxus with
S. mikatae, a third closely related yeast species.

Correlating measures of protein evolution with
network statistics

We used Spearman’s rank correlation coefficient (rs) to
assess the correlation between measures of protein evolu-
tion, such as KA/KS, and network statistics, such as degree
(for undirected networks), in-degree and out-degree (for
directed networks). The rank correlation coefficient is a
non-parametric technique that does not make any as-
sumption regarding population distribution, and it is rela-
tively insensitive to outliers through operating on the rank
of the data (42).

In addition to scatter plots, we used a simple binning
strategy to visualize the correlations: we partitioned TFs
and generic proteins into five bins of roughly equal occu-
pancy based on their degrees in different networks. For
each bin, we calculated and plotted the median value of
KA/KS; the standard errors associated with these values
were calculated using bootstrap resampling.

When ranking proteins by KA/KS for correlation coeffi-
cient and median KA/KS calculation, we assigned
maximum rank to yeast proteins with no ortholog in a
given species comparison.

RESULTS

Significantly different evolutionary trends for TF hubs
and generic protein hubs in the protein–protein
interaction network

We studied protein evolution among TFs in the
genome-wide protein networks of S. cerevisiae (baker’s
yeast). We assembled two types of whole-genome
networks: the protein–protein interaction network and
the transcriptional regulatory network. We further col-
lected 174 yeast TFs (see Supplementary Table S1) and
assembled the TF subnetworks based on three types of
associations: protein–protein interactions involving TFs,
transcriptional regulatory relationships, as well as joint
regulation of TGs among TFs (forming the TF
co-regulatory network) (see ‘Materials and Methods’
section).

We first examined the yeast protein–protein interaction
network. We quantified the relationship between number
of physical interactors (degree in the protein–protein inter-
action network) and KA/KS over all 5861 yeast proteins
(Figure 1a; see Figure 1c for a scatter plot, and
Supplementary Figure S2 for an alternative binning).
KA/KS is the ratio of the rate of non-synonymous DNA

substitutions (KA) to the rate of synonymous DNA sub-
stitutions (KS) in a protein-coding gene; it serves as an
approximate measure of the strength of evolutionary se-
lection acting on the corresponding protein sequence (fac-
toring out mutational background and selection on
synonymous codons). Smaller KA/KS values are associated
with heightened negative selection (slow evolution), while
larger values are associated with neutral or adaptive evo-
lution (fast evolution). We calculated KA/KS over align-
ments between the coding sequences of S. cerevisiae and
their orthologs in S. paradoxus (39) (the closest related
yeast with a sequenced genome). We observed a signifi-
cantly negative correlation between KA/KS and degree in
the protein–protein interaction network (Spearman’s rank
correlation rs=–0.34, two-tailed P< 10�6, 11.6% of the
variance in KA/KS ranks can be explained by interaction
degree ranks). This observation is consistent with the
previous findings (4).
Next, we focused on the 174 TFs in the protein–protein

interaction network. We calculated the number of physical
interactors for each TF (degree) and correlated this value
with KA/KS. If TFs evolve similarly to generic proteins, we
would expect to observe a similarly negative correlation
between degree and KA/KS (4). Surprisingly, such a trend
is only weakly evident over the low-degree TFs, and fails
to encompass the high-degree TFs (Figure 1b;
see Figure 1c for a scatter plot). The overall correlation
between a TF’s number of physical interactors and KA/KS

is negative but only weakly significant (rs=–0.16,
permutation-based two-tailed P=0.033, 2.6% of the
variance in KA/KS ranks can be explained by interaction
degree ranks). Moreover, if we define protein hubs a priori
as the 20% of proteins with largest degree, and TF hubs as
those TFs that are protein hubs, then the median KA/KS

value for TF hubs is not significantly different from that
for TF non-hubs (permutation-based two-tailed
P=0.48).
Our unexpected finding here is that the correlation

between KA/KS and number of physical interactors for
TFs appears to be significantly more positive than the
correlation calculated over all proteins. Is such a differ-
ence in trends likely to arise by chance sampling of the
proteome? To answer this, we repeatedly selected 174
proteins (the number of TFs studied) at random from
the 5861 yeast proteins considered in Figure 1a, and
then calculated the correlation coefficient between KA/KS

and number of physical interactors for this subset of
proteins. The observed correlation between KA/KS and
number of physical interactors for TFs was more
positive than the sampled correlation for generic
proteins in 99.30% of the 105 trials (P=0.0070,
Figure 2a). We conclude that physical interactions
involving TFs and those involving generic proteins
evolve in very different ways: proteins hubs in the
protein–protein interaction network tend to evolve signifi-
cantly more slowly than non-hubs, whereas TF hubs do
not tend to evolve significantly more slowly than TF
non-hubs. This deviation from the generic KA/KS versus
degree relationship is highly unlikely to have occurred by
chance. We repeated the above analyses using KA/KS

values derived from two other close yeast species
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comparisons: S. cerevisiae with S. mikatae, as well as
S. paradoxus with S. mikatae, and found that the correl-
ation between KA/KS and interaction degree is again sig-
nificantly more positive for TFs than it is for generic
proteins in both cases (P=0.00096 and 0.00066, respect-
ively). This suggests that our observed trend difference is
not due to S. paradoxus lineage-specific effects, but rather
applies to all three closely related yeast species.
An important alternative hypothesis that we must

consider relates to protein abundance (expression level),
which—as mentioned in the Introduction—is a dominant
determinant of protein evolutionary rate. Highly ex-
pressed proteins are subject to intense selection on the
rate and accuracy of protein synthesis and folding, and
hence they tend to evolve slowly. Conversely, proteins
with limited expression levels tend to evolve quickly.
Moreover, TFs tend to be expressed at lower levels
on average than generic proteins (Supplementary
Figure S1). Could the observed difference in the correl-
ation between KA/KS and interaction degree for TFs and
generic proteins be simply explained by expression level?
To answer this, we used Codon Adaptation Index as a
proxy for expression level (43), and used inverse

expression level as a surrogate for KA/KS (due to the
inverse correlation between expression level and KA/KS).
If expression levels were the causal factor behind our ob-
servation that the correlation between KA/KS and inter-
action degree for TFs is significantly more positive than
the correlation for generic proteins, then we would expect
to find the correlation between inverse expression level
and interaction degree for TFs to be also significantly
more positive than the correlation for generic proteins.
However, we found that the correlation between inverse
expression level and interaction degree for TFs is not sig-
nificantly more positive than the correlation for generic
proteins (P=0.15, Figure 2b). This suggests that the
observed significant difference in KA/KS versus degree cor-
relation between TFs and generic proteins cannot be ex-
plained by expression level. While expression may play a
significant role in explaining the negative correlation
between evolutionary rate and degree in the global
protein–protein interaction network, it cannot explain
the significantly different evolutionary trends that we
observe here in the TF subnetwork.

While the full BioGRID data set used above minimizes
the potential effects of false negatives, we must also
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Figure 1. The relationship between KA/KS and interaction degree for TFs (purple) and generic proteins (green). KA/KS was calculated over align-
ments between S. cerevisiae ORFs and their orthologs in S. paradoxus. (a) The relationship between KA/KS and number of physical interactors for
5861 yeast proteins. (b) The relationship between KA/KS and number of physical interactors for the 174 yeast TFs. TFs and proteins were binned
according to degree percentile; median KA/KS was calculated for each bin. Numbers above the bars represent the number of TFs/proteins in the bin;
error bars reflect the standard error. (c) Scatter plot relating KA/KS and number of physical interactors for generic proteins and TFs.
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consider the robustness of our conclusions against the po-
tential effects of false positives. To minimize false posi-
tives, we constructed a second smaller and more reliable
data set containing 10 589 physical interactions reported
by at least two independent experiments in the BioGRID
database, and repeated our calculations. Our conclusions
remain unchanged: the correlation between KA/KS and
interaction degree is significantly more positive for TFs
than it is for generic proteins (P=0.00077), and the cor-
relation between inverse expression level and interaction
degree is not significantly more positive for TFs than it is
for generic proteins (P=0.33). Our conclusions are there-
fore robust against false positives and false negatives in
protein–protein interaction data sets.

We further repeated our calculations using KA as a
measure of protein evolutionary rate at the amino acid
sequence level, and found that the correlation between
KA and number of physical interactors is again significant-
ly more positive for TFs than it is for generic proteins
(P=0.00049). Lastly, we repeated our calculations using
KS as a measure of protein evolutionary rate at the syn-
onymous codon level, and found that the trend difference
disappears: the correlation between KS and number of
physical interactors for TFs is not significantly more
positive than it is for generic proteins (P=0.10). Our cal-
culations demonstrate that the observed trend difference is

driven by selective pressure at the level of amino acid
sequence, but not at the level of synonymous codons.

Opposite evolutionary trends for TF in-degree hubs and
generic protein in-degree hubs in the transcriptional
regulatory network

In addition to the protein–protein interaction network,
another major type of protein network is the transcrip-
tional regulatory network. Here, we demonstrate an
even more significant difference between the evolutionary
properties of TFs and generic proteins. We reconstructed
the transcriptional regulatory relationships among TFs in
S. cerevisiae based on large-scale chromatin immunopre-
cipitation followed by microarray identification
(ChIP-chip) experiments (see ‘Materials and Methods’
section). Since the transcriptional regulatory network is
a directed graph, each node has an in-degree (number of
regulators) and an out-degree (number of regulated
targets). Here, we consider the relationship between
in-degree (number of regulators) and KA/KS, as it is ap-
plicable to both TFs and generic proteins.
First, we calculated the regulatory in-degree (number of

regulators) for each protein in the whole-genome tran-
scriptional regulatory network and correlated these
values with KA/KS. When averaged over the entire
genome, we find that there is a weak yet statistically sig-
nificant trend for generic proteins with more regulators to
evolve more slowly due to increased negative selection
(Figure 3a; see Figure 3c for a scatter plot, and
Supplementary Figure S3 for an alternative binning), in
agreement with our previous findings (18) (rs=–0.08,
two-tailed P< 10�6, 0.64% of the variance in KA/KS

ranks can be explained by regulatory in-degree ranks).
We repeated this calculation with additional TF–TG regu-
latory relationships as annotated in the YEASTRACT
database, and observed the same trend (rs=–0.15,
P< 10�6, 2.25% of the variance in KA/KS ranks can be
explained by regulatory in-degree ranks).
Next, we focused on the relationship between regulatory

in-degree (number of regulators) and KA/KS for yeast TFs
(Figure 3b; see Figure 3c for a scatter plot). In agreement
with the findings of previous studies (26), the correlation
between KA/KS values for TFs and regulatory in-degree is
significantly positive over the full range of in-degree values
(rs=0.185, permutation-based two-tailed P=0.014,
3.42% of the variance in KA/KS ranks can be explained
by regulatory in-degree ranks). This positive correlation
cannot be explained by expression level, as the correlation
between inverse expression level and regulatory in-degree
for TFs is actually negative (rs=–0.14) and certainly not
significantly positive.
Our unexpected finding here is that, similar to number

of physical interactors studied in the previous section, the
correlation between number of regulators and KA/KS for
TFs also appears to be significantly more positive than the
correlation calculated over all proteins. Is such a differ-
ence in trends likely to arise by chance sampling of the
proteome? Following the same sampling procedure used
in our previous analysis of the protein–protein interaction
network, we found that the difference in the KA/KS versus
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Figure 2. Evaluating the statistical significance of the differences in the
correlations between measures of protein evolution and interaction
degree for TFs and generic proteins. The probability distribution of
the expected Spearman’s rank correlation coefficients was generated
by considering 105 samples of 174 proteins randomly selected from
the 5861 total yeast proteins. The position of the observed correlation
coefficient for the actual 174 yeast TFs is highlighted. (a) The correl-
ation between KA/KS and interaction degree is significantly more
positive for TFs than it is for generic proteins (P=0.0070). (b) The
correlation between inverse expression level and interaction degree is
not significantly more positive for TFs than it is for generic proteins
(P=0.15).
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regulatory in-degree trends for TFs and generic proteins is
highly unlikely to result from chance (P=0.0019,
Figure 4a). This trend difference remains consistent
and significant in comparisons with a third closely
related yeast species, S. mikatae (P=0.0046 for S.
cerevisiae versus S. mikatae comparison, and 0.00097 for
S. paradoxus versus S. mikatae comparison). This differ-
ence in evolutionary trends cannot be explained by expres-
sion level: the correlation between inverse expression level
and regulatory in-degree for TFs is not significantly more
positive than the correlation for generic proteins
(P=0.39, Figure 4b).
While the full ChIP-chip data set used above minimizes

the potential effects of false negatives as well as investiga-
tor bias, we must also consider the robustness of our con-
clusions against the potential effects of false positives. To
minimize false positives, we constructed a second smaller
and more reliable data set containing 4545 transcriptional
regulatory interactions reported by at least two independ-
ent ChIP-chip experiments, and repeated our calculations.
Our conclusions remain unchanged: the positive correl-
ation between KA/KS and regulatory in-degree for TFs is
significantly more positive than the negative correlation
for generic proteins (P=0.014), and the correlation
between inverse expression level and regulatory in-degree

is not significantly more positive for TFs than it is for
generic proteins (P=0.55). We further constructed a
third data set containing 5758 transcriptional regulatory
interactions reported by at least two independent experi-
ments as annotated in the YEASTRACT database, and
repeated our calculations. Our conclusions remain un-
changed: the positive correlation between KA/KS and regu-
latory in-degree for TFs is significantly more positive than
the negative correlation for generic proteins (P=0.0038),
and the correlation between inverse expression level and
regulatory in-degree is not significantly more positive for
TFs than it is for generic proteins (P=0.22). Our conclu-
sions are therefore robust against false positives and false
negatives in transcriptional regulatory data sets.

We further repeated our calculations using KA as a
measure of protein evolutionary rate at the amino acid
sequence level, and found that the correlation between
KA and regulatory in-degree is again significantly more
positive for TFs than it is for generic proteins
(P=0.00032). Lastly, we repeated our calculations using
KS as a measure of protein evolutionary rate at the syn-
onymous codon level, and found that the trend difference
disappears: the correlation between KS and regulatory
in-degree for TFs is not significantly more positive than
it is for generic proteins (P=0.38). Our calculations again
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demonstrate that the observed trend difference is driven by
selective pressure at the level of amino acid sequence, but
not at the level of synonymous codons.

TF regulatory out-degree and co-regulatory hubs do not
tend to evolve more slowly than TF non-hubs

Next, we considered the relationship between KA/KS and
regulatory out-degree (number of regulated targets) in the
transcriptional regulatory network. Note that this
measure can only be defined for TFs as it has no analog
among generic proteins. For each TF, we calculated two
measures of regulatory out-degree: the total number of
regulated TGs and the number of regulated TFs.
Consistent with findings of previous studies (25,26), the
correlation between number of regulated TGs and
KA/KS is not significantly different from zero (rs =
0.018, two-tailed P=0.83). We further restricted our
analysis to TGs that are also TFs (Figure 5a; see
Figure 5b for a scatter plot), and found that the correl-
ation between number of regulated TFs and KA/KS is
weakly positive but again not significantly different from
zero (rs=0.047, two-tailed P=0.58). Although these
positive correlations are not statistically significant, it is
clear that TF regulatory out-degree hubs do not tend to
evolve more slowly than TF non-hubs.

In addition to physical interactions and directed regu-
latory TF–TG relationships, a third major type of associ-
ation in which TFs participate is the co-regulatory
relationship, defined as the significant association among
TFs in the joint regulation of common TGs. As is the case
for out-degree, this measure can only be defined for TFs as
it has no analog among generic proteins. Our reconstruc-
tion of the TF co-regulatory relationship is based on the
hypothesis that cooperative TFs tend to share more
common TGs than expected by chance (36); this notion
has been widely applied to study the mechanisms and
general principles of combinatorial regulation (44). We
reconstructed the TF co-regulatory network in
S. cerevisiae by enumerating all co-regulatory TF pairs
based on large-scale ChIP-chip experiments (see
‘Materials and Methods’ section). For every TF, we
counted the number of co-regulatory edges in the TF
co-regulatory network, and correlated this degree with
KA/KS (Figure 6a; see Figure 6b for a scatter plot). The
correlation is positive and weakly significant (rs=0.19,
two-tailed P=0.022, 3.6% of the variance in KA/KS

ranks can be explained by co-regulatory degree ranks).
This positive correlation cannot be explained by expres-
sion level, as the correlation between inverse expression
level and co-regulatory degree for TFs is not significantly
positive (P=0.63). When KA is used as a measure of evo-
lutionary rate, a positive and weakly significant correl-
ation with co-regulatory degree is again observed
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Figure 4. Evaluating the statistical significance of the differences in the
correlations between measures of protein evolution and regulatory
in-degree for TFs and generic proteins. The probability distribution
of the expected Spearman’s rank correlation coefficients was generated
by considering 105 samples of 174 proteins randomly selected from the
5861 total yeast proteins. The position of the observed correlation co-
efficient for the actual 174 yeast TFs is highlighted. (a) The correlation
between KA/KS and regulatory in-degree is significantly more positive
for TFs than it is for generic proteins (P=0.0019). (b) The correlation
between inverse expression level and regulatory in-degree is not signifi-
cantly more positive for TFs than it is for generic proteins (P=0.39).
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(rs=0.18, two-tailed P=0.031, 3.24% of the variance in
evolutionary rate ranks can be explained by co-regulatory
degree ranks). On the contrary, when KS is used as a
measure of evolutionary rate, the correlation is no
longer significant (P=0.70).
We considered the possibility that the positive correl-

ation between cooperativity and KA/KS for TFs could be a
byproduct of gene duplication, as duplicated TFs may
have a boosting effect on cooperativity, and duplicated
genes tend to evolve quickly (45). Here, we define gene
duplication for TFs as a TF–TF alignment having
BLAST E value of at most 10�5 and at least 50%
coverage. We found that the correlation between degree
of gene duplication and KA/KS for TFs is not significantly
positive (P=0.20). We conclude that gene duplication
cannot explain the positive correlation between
cooperativity and KA/KS for TFs. At the same time, it is
still possible that TF hubs experience a higher degree of
other types of functional redundancy that remain to be
characterized.
When a third closely related yeast species S. mikatae is

used in comparison, the correlation between KA/KS and
co-regulatory degree remains positive but the statistical
significance diminishes (rs=0.047 and two-tailed
P=0.58 for S. cerevisiae versus S. mikatae comparison;

rs=0.11 and two-tailed P=0.18 for S. paradoxus versus
S. mikatae comparison). Nevertheless, our main conclu-
sion remains correct that TF co-regulatory hubs do not
tend to evolve more slowly than TF non-hubs.

DISCUSSION

Our findings can be summarized as follows: within the
global protein–protein interaction and transcriptional
regulatory networks, TF hubs and protein hubs evolve
in qualitatively different—and sometimes even
opposite—ways. Protein hubs in the interaction and regu-
latory networks tend to experience strong negative selec-
tion, and thus evolve more slowly than protein non-hubs.
On the contrary, four lines of evidence based on inter-
action degree, regulatory in-degree, regulatory out-degree
and co-regulatory degree consistently and collectively
demonstrate that TF hubs do not tend to evolve signifi-
cantly more slowly than TF non-hubs. Most importantly,
the correlations between evolutionary rate and degrees for
TFs are significantly more positive than those for generic
proteins within the same global protein–protein
interaction and transcriptional regulatory networks.
These observations cannot be explained by confounding
variables such as expression level and gene duplication,
and hold for three closely related yeast species.

The existence of a significant correlation, whether
positive or negative, between degree and strength of selec-
tion for TFs and generic proteins in protein–protein inter-
action and transcriptional regulatory networks indicates
that a protein’s network properties may play an important
role in determining its fitness contribution and evolution.
Indeed, our observations suggest that both generic protein
hubs and TF hubs are important to a cell’s overall fitness,
with measurable evolutionary consequences. At the same
time, the observed difference in the strength and sign of
these evolutionary trends suggests that there are funda-
mental differences in the function and evolution of
generic protein hubs and TF hubs.

The evolution of generic protein hubs can be largely
understood in terms of negative selection. Generic
protein–protein interactions are fundamental to the basic
functions of a living cell, and as such they tend to be
ancient, well-conserved among species and under strong
negative selection. Protein hubs with many interactors are
expected to experience greater structural and functional
constraint, resulting in stronger negative selection
(20,46). In the absence of a competing force, generic
protein interaction hubs are therefore expected to be
slow evolving. Similarly, proteins under a high level of
regulation tend to be important to the basic function of
the cell under various conditions (such as heat shock
proteins), and are therefore subject to strong negative se-
lection. Hence, generic protein hubs with many regulators
are also expected to be slow evolving.

Many of our observations regarding TF hubs can also
be explained by negative selection. As a group, TFs
(including TF hubs) are predominantly under negative se-
lection, with KA/KS values much less than 1 (Figure 1b).
Like other proteins, TFs experience strong sequence
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constraints for proper folding and for maintaining the
functionality of their protein- and DNA-binding inter-
faces—both of which contribute to the overall fitness
density of the TFs. Our observation that TF hubs in the
protein–protein interaction network do not tend to evolve
significantly more slowly than TF non-hubs can be ex-
plained by a relaxation of negative selection: protein–
protein interactions tend to impose a reduced level of
structural and functional constraint on TFs compared to
generic proteins. This is potentially due to the fact that
interactions involving TFs may play a regulatory role in
the cell, and as a result may be more transient, more
dynamic and more subtle than generic protein–protein
interactions. In addition, our observation that TF regula-
tory out-degree hubs do not tend to evolve more slowly
than non-hubs suggests that TF regulatory out-degree
edges impose at most weak selective constraint on TF
evolution.

At the same time, the observed trends that TF in-degree
hubs in the transcriptional regulatory network tend to
evolve more quickly than TF non-hubs can be best ex-
plained by the additional force of positive selection
among the TF hubs (26). There are fundamental differ-
ences in the evolutionary capacity of TFs and generic
proteins. Generic proteins perform specific, highly
optimized biochemical activities that are fundamentally
important across diverse species. An organism’s TFs
regulate and organize these biochemical activities, in
part fostering compatibility between the organism and
its environment. As a result, TF hubs are fine-tuned in a
lineage-specific manner, with great potential for adaptive
variation and network rewiring. Interaction and regula-
tion of TFs operate at a higher level than interaction
and regulation of generic proteins, generating regulatory
complexity and specificity in a particular organism. While
changes in protein hubs are more likely to produce
non-viable phenotypes, changes in TF hubs are more
likely to produce innovative phenotypes. Because TF
hubs have large influence over transcriptional regulation,
such subtle changes may produce wide-spread reorganiza-
tion of the regulatory network, ultimately facilitating
adaptation to different environmental conditions.
Finally, positive selection may also play a role in the
elevated evolutionary rates of TF hubs in the protein–
protein interaction network. These differences between
TFs and generic proteins underlie the significantly differ-
ent evolutionary trends of TF subnetworks and generic
protein networks. Known cases of positive selection
acting on yeast genes did not provide sufficient statistical
support to explain our observed trends (47,48), possibly
due to the inherent difficulty of detecting positive selec-
tion. In the following sections, we offer support for our
hypotheses in the form of case studies on fast evolving TF
hubs and network rewiring.

There are many examples of rapid and potentially
adaptive evolution among TF hubs in yeast (30,49–54).
The transcriptional activator GAL4 is an interaction
hub (interacting with 37 proteins, including 6 TFs), regu-
latory in-degree hub (regulated by 6 other TFs), regula-
tory out-degree hub (regulating 100 genes, including 6
TFs) and co-regulatory hub (acting cooperatively with

21 other TFs) in S. cerevisiae interaction and regulatory
networks. At the same time, GAL4 is among the top
20% fastest evolving TFs in paired comparison with
S. paradoxus. Recent analysis of the galactose genetic
pathways in Candida albicans and S. cerevisiae reveals
that GAL4 plays an important role in the rewiring of
the transcriptional regulations of galactose catabolism in
yeasts (55). A second example is IME1, a transcriptional
activator and master regulator that initiates yeast sporu-
lation. IME1 is a regulatory in-degree hub (regulated by
11 TFs) and co-regulatory hub (acting cooperatively with
26 other TFs) in S. cerevisiae regulatory networks. At the
same time, IME1 ranks among the top 20% fastest
evolving TFs in paired comparison with S. paradoxus.
A recent study shows that natural variation in the effi-
ciency of sporulation between oak tree and vineyard
yeast strains is due to allelic variation between four nu-
cleotide changes in three TFs, including IME1 (54). A
third and final example is ACA1, a regulatory in-degree
hub (regulated by 12 TFs), which has been previously
proposed as a target of positive selection by a sliding
window analysis (47).
Further evidence of a role for positive selection in ex-

plaining the elevated evolutionary rates of TF hubs is
found in experimental reports of the prevalence and
adaptive significance of TF network rewiring. This is in
stark contrast to the generic protein–protein interaction
network, where network rewiring appears to be much
less widespread. Genome-wide studies reveal signs of ex-
tensive transcriptional rewiring in related yeasts,
indicating that even closely related organisms regulate
their genes using markedly different transcriptional regu-
latory interactions (53,55,56). Several striking cases of TF
network rewiring have been identified by comparing
C. albicans and S. cerevisiae; examples include the tran-
scriptional regulation of (i) the galactose catabolism
pathway (55), (ii) the mating circuit (51,57,58), as well as
(iii) the nuclear (59) and mitochondrial (60) ribosomal
genes. Interactions and regulations involving TFs form
high-level, dynamic network structures such as feed-
forward and feed-back loops (61,62), and they are import-
ant in combinatorial regulation—a pervasive mechanism
in eukaryotic organisms used to achieve increased specifi-
city and integration of multiple signals in the control of
gene expression (52). It is plausible that changes in the
interaction and regulation of TFs could facilitate tran-
scriptional regulatory circuit rewiring, and subsequently
accelerate the evolution of TFs. Differences in the inter-
action and regulation patterns of TFs across related
species may be responsible for rapid evolutionary
adaption to varied ecological niches (54). Recent studies
reveal that the yeast transcriptional regulatory network
responds to different conditions using distinct subnet-
works of TF–TF regulatory interactions with large topo-
logical differences (63). Within species, genetic interactions
between TFs are a major source of phenotypic diversity,
and there is evidence of positive selection for such inter-
actions (54). Indeed, a recent gene network rewiring ex-
periment shows that adding new links among TFs can
confer a fitness advantage in Escherichia coli (62),

Nucleic Acids Research, 2010, Vol. 38, No. 18 5967



elegantly highlighting the potential adaptive significance
of network rewiring.
We recognize that TF sequence change is not the sole

driving force in adaptive network evolution. In fact, we
expect the majority of network rewiring to result from
the creation and elimination of DNA binding sites, which
are much more evolvable than their corresponding TFs
and TF–DNA binding interfaces (30,64). Finally, we
note that TFs in general are composed of multiple
domains with modular functions such as DNA-binding,
transactivation and other regulatory activities. While this
work utilizes a single, averaged measure of selective
strength for each TF, further examination of the patterns
of amino acid substitution in these specific domains may
provide additional mechanistic insight into the evolution-
ary trends reported here.
Biomolecular network analyses have been highly suc-

cessful in revealing the large-scale organizational and evo-
lutionary principles of a cell. Such studies tend to focus on
graph theoretical analysis of nodes and edges within a
single, global biomolecular network. In this article, we
propose the novel concept of the TF subnetworks, which
are the subnetworks of physical interaction, transcription-
al regulation and co-regulatory relationships involving
TFs. By carrying out a systematic analysis of protein evo-
lution in the TF subnetworks in comparison to the global
protein networks, we reached the surprising conclusion
that subnetworks within the same global network can
display different evolutionary trends. For example,
within the global protein–protein interaction network,
TF hubs and protein hubs have significantly different evo-
lutionary trends. Similarly, within the global transcrip-
tional regulatory network, TF in-degree hubs and
protein in-degree hubs have strongly opposing evolution-
ary trends. Most importantly, we show that the observed
differences in evolutionary trends are not due to system-
atic differences between protein–protein interaction
networks and transcriptional regulatory networks, but
rather result from the different functional roles that TFs
and generic proteins play within both the protein–protein
interaction and transcriptional regulatory networks. Our
work suggests that biological networks in a cell are multi-
leveled, and that high-level network components (such as
TFs) are subject to additional evolutionary forces
compared to low-level components (such as generic
proteins). The striking difference between the evolution
of TF hubs and generic protein hubs demonstrates that
components within the same global network can be
governed by distinct evolutionary principles, and
suggests that general network organizational and evolu-
tionary principles may not be applicable to specific sub-
networks. Our work demonstrates a high degree of
functional and evolutionary heterogeneity within biologic-
al networks, and highlights the rich insights that can be
gained from modeling biomolecular subnetworks.
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