28,989 research outputs found
Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing
In this paper, we study the convergence behavior of distributed iterative
algorithms with quantized message passing. We first introduce general iterative
function evaluation algorithms for solving fixed point problems distributively.
We then analyze the convergence of the distributed algorithms, e.g. Jacobi
scheme and Gauss-Seidel scheme, under the quantized message passing. Based on
the closed-form convergence performance derived, we propose two quantizer
designs, namely the time invariant convergence-optimal quantizer (TICOQ) and
the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect
of the quantization error on the convergence. We also study the tradeoff
between the convergence error and message passing overhead for both TICOQ and
TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative
waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte
Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation
In this paper, we consider the distributive queue-aware power and subband
allocation design for a delay-optimal OFDMA uplink system with one base
station, users and independent subbands. Each mobile has an uplink
queue with heterogeneous packet arrivals and delay requirements. We model the
problem as an infinite horizon average reward Markov Decision Problem (MDP)
where the control actions are functions of the instantaneous Channel State
Information (CSI) as well as the joint Queue State Information (QSI). To
address the distributive requirement and the issue of exponential memory
requirement and computational complexity, we approximate the subband allocation
Q-factor by the sum of the per-user subband allocation Q-factor and derive a
distributive online stochastic learning algorithm to estimate the per-user
Q-factor and the Lagrange multipliers (LM) simultaneously and determine the
control actions using an auction mechanism. We show that under the proposed
auction mechanism, the distributive online learning converges almost surely
(with probability 1). For illustration, we apply the proposed distributive
stochastic learning framework to an application example with exponential packet
size distribution. We show that the delay-optimal power control has the {\em
multi-level water-filling} structure where the CSI determines the instantaneous
power allocation and the QSI determines the water-level. The proposed algorithm
has linear signaling overhead and computational complexity ,
which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin
Time-varying Yield Distributions and the U.S. Crop Insurance Program
The objective of this study is to evaluate and model the yield risk associated with major agricultural commodities in the U.S. We are particularly concerned with the nonstationary nature of the yield distribution, which primarily arises because of technological progress and changing environmental conditions. Precise risk assessment depends on the accuracy of modeling this distribution. This problem becomes more challenging as the yield distribution changes over time, a condition that holds for nearly all major crops. A common approach to this problem is based on a two-stage method in which the yield is first detrended and then the estimated residuals are treated as observed data and modeled using various parametric or nonparametric methods. We propose an alternative parametric model that allows the moments of the yield distributions to change with time. Several model selection techniques suggest that the proposed time-varying model outperforms more conventional models in terms of in-sample goodness-of-fit, out-of- sample predictive power and the prediction accuracy of insurance premium rates.Risk and Uncertainty,
A Robust Study of Regression Methods for Crop Yield Data
The objective of this study is to evaluate the robust regression method when detrending the crop yield data. Using a Monte Carlo simulation method, the performance of the proposed Time-Varying Beta method is compared with the previous study of OLS, M-estimator and MM-estimator in an application of crop yield modeling. We analyze the properties of these estimators for outlier-contaminated data in both symmetric and skewed distribution case. The application of these estimation methods is illustrated in an agricultural insurance analysis. The consequence of obtaining more accurate detrending method will offer the potential to improve the accuracy of models used in rating crop insurance contracts.Research Methods/ Statistical Methods, Risk and Uncertainty,
Directional Spatial Dependence and Its Implications for Modeling Systemic Yield Risk
The objective of this study is to evaluate and model the spatial dependence of systemic yield risk. Various spatial autoregressive models are explored to account for county level dependence of crop yields. The results show that the time trend parameters of yields are correlated across spaces and the spatial correlations are changing with time. In addition, the spatial correlation of neighborhood in west/east direction is stronger than that of north/south direction. The information of the spatial dependence of yield risk will help the construction of better risk management programs for protecting producers from systemic yield risks.Spatial Autoregressive Model, Spatial Dependence, Risk and Uncertainty,
Low Complexity Delay-Constrained Beamforming for Multi-User MIMO Systems with Imperfect CSIT
In this paper, we consider the delay-constrained beamforming control for
downlink multi-user MIMO (MU- MIMO) systems with imperfect channel state
information at the transmitter (CSIT). The delay-constrained control problem is
formulated as an infinite horizon average cost partially observed Markov
decision process. To deal with the curse of dimensionality, we introduce a
virtual continuous time system and derive a closed-form approximate value
function using perturbation analysis w.r.t. the CSIT errors. To deal with the
challenge of the conditional packet error rate (PER), we build a tractable
closed- form approximation using a Bernstein-type inequality. Based on the
closed-form approximations of the relative value function and the conditional
PER, we propose a conservative formulation of the original beamforming control
problem. The conservative problem is non-convex and we transform it into a
convex problem using the semidefinite relaxation (SDR) technique. We then
propose an alternating iterative algorithm to solve the SDR problem. Finally,
the proposed scheme is compared with various baselines through simulations and
it is shown that significant performance gain can be achieved.Comment: 14 pages, 7 figures, 1 table. This paper has been accepted by the
IEEE Transactions on Signal Processin
- …
