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Abstract

The objective of this study is to evaluate and model the yield risk associated
with major agricultural commodities in the U.S. We are particularly concerned
with the nonstationary nature of the yield distribution, which primarily arises
because of technological progress and changing environmental conditions. Precise
risk assessment depends on the accuracy of modeling this distribution. This problem
becomes more challenging as the yield distribution changes over time, a condition
that holds for nearly all major crops. A common approach to this problem
is based on a two-stage method in which the yield is first detrended and then
the estimated residuals are treated as observed data and modeled using various
parametric or nonparametric methods. We propose an alternative parametric
model that allows the moments of the yield distributions to change with time.
Several model selection techniques suggest that the proposed time-varying model
outperforms more conventional models in terms of in-sample goodness-of-fit, out-
of-sample predictive power and the prediction accuracy of insurance premium rates.
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Time-varying Yield Distributions and the U.S.

Crop Insurance Program

The Federal Crop Insurance program represents an important component of U.S.

agricultural policy and is intended to protect farmers from yield and revenue risk.

Accurate modeling of crop yield distributions is essential for the proper design of

crop insurance contracts and to the maintenance of an actuarially sound insurance

program. Historical agricultural yield data suggest a strong upward trend in crop

yields (figure 1(a)). Advances in technology, germplasm, breeding techniques, the

development of new hybrids and changes in environmental factors may significantly

affect the distributions of crop yields. These changes can complicate efforts to

accurately model yield distributions using data observed over time.

Many studies have attempted to determine the distributional model and

estimation methods that best characterize crop yield distributions. Modeling

approaches in the current literature range from non-parametric (Goodwin and

Ker, 1998) to parametric methods based on the assumption that crop yields are

independently and identically distributed. The parametric approach of modeling

yields usually involves selection and specification of candidate distribution families,

parameter estimation and goodness-of-fit assessments. Among others, the Beta

distribution is popularly used in practice due to its flexibility and ability to represent

the skewness typically associated with crop yield distributions. The notion of

a conditional Beta distribution for yields was introduced by Nelson and Preckel

(1989). Other popular candidates used in the literature include the lognormal

distribution (Day, 1965), the Normal distribution (Just and Weninger, 1999),

the Weibull distribution (Chen and Miranda, 2004) and the Logistic distribution

(Sherrick et al., 2004). Evidence of non-normal yields has been presented by a

number of authors, including Taylor (1990), Ramirez (1997) and Ramirez, Misra,
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and Field (2003).

In many cases, agricultural yields display a strong upward trend over time and

the deviations from trend (residuals) frequently display heteroscedasticity (see figure

1(a)) and thus violating the assumption that yields are identically distributed. A

very common approach to modeling yield risk using time-series data has been to

first detrend the time series data and then estimate the yield distribution using the

detrended yield data, thereby treating the estimated, detrended yields as “observed”

data. These approaches are often referred to as “two stage” methods; the first stage

fits a trend model to the data while the second stage uses the detrended data to

model the distribution. Examples of such two-stage detrending procedures can be

found in, among others, Miranda and Glauber (1997), Swinton and King (1991),

and Atwood, Shaik, and Watts (2003).

In this two-stage method, it is crucial to determine the correct functional form of

the regression representing trend in the first stage and then to establish the correct

distributional properties of the detrended data, including such characteristics as

skewness, kurtosis, and heteroscedasticity. However, it has been recognized that

the resulting estimated residuals, representing the detrended yields, are subject to

the estimation uncertainty associated with sampling variability in the first stage

estimates of trend and thus may not necessarily provide an accurate representation

of the actual yield distribution. Although any biases induced at the first-stage

asymptotically approach zero when the correct functional form is used in the

regression and errors are homoscedastic, the uncertainty induced at the first stage, if

not accounted for in the second stage estimates of the yield distribution, will lead to

inaccurate estimation of the variance in the final estimates. The magnitude of this

effect can be large especially when the errors are heteroscedastic (Robinson (1987))

and thus can potentially induce significant adverse selection into an insurance
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program if ignored.

This standard two-stage method has been one of the most popular approaches

to removing time trends and modeling the distribution of crop yields. A similar

two-stage method is used to rate the Group Risk (GRP) and Gross Revenue

Insurance (GRIP) programs, though this method does address the potential for

heteroscedasticity. However, it is possible to account for the uncertainties associated

with the first stage estimates and adequately represent characteristics of the yield

distribution (such as deterministic trends and heteroscedasticity) by applying

an alternative simultaneous estimation method. We propose a likelihood based

estimation method that simultaneously estimates the trend (conditional mean) and

higher order conditional moments of the yield density by using a flexible class of

parametric distributions. We also provide a set of model validation tools that

enables a researcher to test the validity of the proposed class of distributions in

approximating the true underlying data generation mechanism.

The method, along with its validation measures proposed here, allows one to

measure conditional yield risk in a dynamic setting and thereby calculate premium

rates for crop insurance contracts in a more accurate and systematic way. Our

method essentially models the first four conditional moments of the distribution

simultaneously by allowing location, scale, skewness and kutosis parameters of the

specific distributional family to evolve over time, whereas the more common two-

stage method usually allows one to model only the location (conditional mean)

and sometimes the scale (conditional variance) to reflect changes over time. A

more complete and coherent picture of technological progress and the consequential

changes in yield risk can be provided by simultaneously modeling the time trend

and the distributional parameters.
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A Conventional Two-Stage Estimation Framework

In most empirical analyses, a deterministic trend is used to capture the dynamics

of the expected yields and thus to represent the variation of yields around this

expected level.1 The trend component is usually controlled for before assessing the

distribution of yields–generally using a homoscedastic parametric or nonparametric

regression model. Popular regression models include a log-linear specification based

on polynomials, kernel regression, smoothing splines, and partial linear models

(Gyorfi et al. (2002)). We illustrate this idea by using a quadratic trend as well as

a nonparametric trend model.2

Consider the following trend model:

yt = m(xt) + εt (1)

where yt is the observed crop yield in year t, (t = 1, . . . , T ), m(x) denotes

the regression function E(Yt|Xt = x), xt represents linear or nonlinear time

indexes representing trend, and εt represent residuals that are assumed to be

independently distributed with mean zero. The regression function m(·) can be

estimated nonparametrically using kernel methods or smoothing spline methods.

Alternatively, if we assume a parametric functional form for m(·), then the

regression coefficients can be obtained using ordinary least squares (OLS).3 In

either case, the residuals are obtained as ε̂t = yt − m̂(xt). We considered both

1The main justification for using a deterministic component is that, if crop yield variables
evolve slowly through time, then approximation of a deterministic component may be sufficient
to model the yield distribution (Just and Weninger, 1999).

2The selection of these two trend models is intended to provide a benchmark for comparison
purposes. There are other detrending methods such as log-linear regression. Since the focus of
this study is to compare the two-stage approach and the time-varying method that we propose as
an alternative, we use representative methods to illustrate the concepts. A comprehensive survey
of all possible detrending methods is beyond the scope of this study.

3We assume that m(xt) = m0(xt, β), where m0 is a known functional form up to some finite
dimensional regression coefficient vector β.
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quadratic and nonparametric trend models. The Kolmogorov-Smirnov (K-S) 2-

sample goodness of fit (GOF) test suggests that the two residual distributions are

not significantly different between the nonparametric and parametric models based

on the data in this study. On the basis of this test, the quadratic detrending method

is used as a benchmark.

Our empirical analyses presented in this paper are based on applications to

USDA’s National Agricultural Statistics Services (NASS) county-level average

yields.4 Figure 1(b) presents the nonparametric residual plot of annual corn yields

in Iowa, which shows that the deviations from trend tend to be proportional to the

level of the yields. To account for this temporal heteroscedasticity effect, a rescaled

form of the deviations from a trend-based, forecasting equation is often suggested.

This approach, though ad hoc, is commonly used in practice (see, for example,

Miranda and Glauber (1997), Atwood, Shaik, and Watts (2003)). By dividing each

error by its associated forecast, the residuals can be scaled to the year T equivalent

predicted yield.

We use a goodness of fit (GOF) specification test to determine the appropriate

distribution for the detrended yield ỹt. A Q-Q plot based on the residuals ε̂t (figure

1(b)) suggests that the residuals are more negatively skewed than what would be

implied by the normal distribution, which suggests that a Beta distribution may

be a viable candidate. A GOF test for the Beta distribution (based on a Chi-

square statistic) confirms that a Beta distribution provides a reasonable fit for the

normalized county-level yields typically applied in this two-stage approach. For

example, the GOF test yields a p-value of 0.51 for Kossuth County and 0.62 for

Adair County Iowa all-practice corn yields. We use Beta(α, β, θ, δ) to denote a

Beta distribution with location parameter θ ≥ 0, scale parameter δ > 0, and shape

4The data are available at the NASS website at http://www.nass.usda.gov.
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parameters α, β > 0.5 This implies that the yields follow a Beta distribution with

constant shape parameters and time-varying location and scale parameters, i.e.,

yt ∼ Beta(α, β, θ̃t, δ̃t), with θ̃t = ρ̂tθ, δ̃t = ρ̂tδ and ρ̂t = ŷt

ŷT
. The log-likelihood

function of a general Beta distribution based on the detrended data ỹt with two

shape parameters α, β and location θ and scale δ parameters, is given by,

LLF(α, β, θ, δ|ỹt, t = 1, . . . , T ) =
T∑
t=1

(α− 1) log(ỹt − θ)+ +
T∑
t=1

(β − 1) log(δ + θ − ỹt)+

−
T∑
t=1

log(B(α, β))−
T∑
t=1

(α + β − 1) log(δ) (2)

where log(B(α, β)) = log(Γ(α)) + log(Γ(β)) − log(Γ(α + β)) and log a+ = log a if

a > 0 and log a+ = 0 otherwise, which ensures that θ ≤ ỹt ≤ θ + δ ∀t, for any

θ, δ > 0.

We obtain the parameter estimates (α̂, β̂, θ̂, δ̂) by maximizing the LLF(α, β, θ, δ)

based on the normalized values of ỹt. The results are presented in table 1. The

predicted mean yield can be calculated from the detrended model as:

ˆ̂yt =
ŷT
ŷt

ˆ̃yt =
m̂(xT )

m̂(xt)
(θ̂ + δ̂

α̂

α̂ + β̂
) (3)

As we have noted, using a first stage estimation to detrend yield data and then

treating the resulting detrended yields as if they were observed without error may

not be appropriate because the first stage estimation error is ignored (e.g., ε̂t’s are

assumed known for the LLF in equation 2.) A more systematic inferential method

may be needed to accurately capture trend effects and model conditional yield risk.

5In other words, ỹt−θ
δ ∼ Beta(α, β), where Beta(α, β) represents a standard Beta distribution

defined on (0, 1) with shape parameters α, β > 0.

6



A Time-Varying Yield Distribution Model

In this section, a flexible class of parametric models is proposed which allows us

to simultaneously and coherently specify the first four moments using suitable

polynomials of time and the coefficients of the polynomials are estimated simulta-

neously by maximizing the resulting likelihood function. Several alternative models

are examined to measure conditional yield risk. For instance, instead of using

polynomials to models the first four moments of the proposed distribution, one may

use knot-based splines. In contrast to typical methods, the time-varying model

accounts for parameter uncertainty by maximizing the time-varying likelihood

function, which includes time-trend parameters and the distributional parameters

in one step. The results of this proposed model are compared to those based on

the conventional two-stage approach described in the previous section for several

important crops and counties drawn from U.S. county-level data.

The basic assumption of the time varying model is that the parameters of

the distribution follow a specific temporal pattern, such that the whole temporal

changes of the yield distribution can be captured by the time-varying shape and

scale parameters. The resulting parameter estimates are consistently estimated if

the likelihood function is appropriately specified.

These time varying parameters evolve according to an exponential form.

This particular functional form ensures that the Beta shape, scale, and location

parameters are positive at every observation. We evaluated two different time trend

structures for the parameters of the yield distributions—a standard linear trend

and a quadratic trend model. However our method is not restricted to these chosen

functional forms.6 The log-likelihood function of the time-varying Beta distribution

6Of course, other functional forms including quadratic specifications could be used to ensure
positive parameters. For instance, quite generally we can model any of these Beta parameters
as exp{

∑J
j=1 ψj(t)bj}, where ψj(·)’s may represent members of collection of J basis functions
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is identical to that of the constant Beta distribution (equation 2) with the notable

exception that the shape and scale parameters are allowed to vary with time and

thus appear as αt, βt, δt, and θt.

Because the quadratic specification nests the linear trend, a standard likelihood

ratio test can be used to evaluate the statistical significance of the quadratic

terms and thus to select the optimal trend specification. Note that the Beta

distribution is characterized by four parameters (α, β, θ, and δ). For simplicity

and numerical stability of the maximum likelihood approach, we fix the minimum

possible yield to be equal to zero in each case (i.e., by setting θt = 0 for all t).

We allow each parameter of the Beta distribution to vary over time through a

functional relationship of the form (e.g., α = exp(f(b, t)) where f(·) is a linear or

quadratic function of time). Such a specification allows us to use an unconstrained

maximization of the likelihood function. As our results demonstrate below, the

quadratic terms were not found to be statistically significant for the data sets that

we have analyzed and thus our final representation of the conditional moments use

a standard linear trend.

The predicted value ŷt from the time-varying model is given by

ŷt = δ̂t
α̂t

α̂t + β̂t
(4)

where αt = α(t, b̂), βt = β(t, b̂), and δt = δ(t, b̂).

(e.g., choosing ψj(t) = tj−1 we obtain polynomials while choosing ψj(t) = (t − tj)3+ we obtain
cubic polynomials with knots tj ’s). Alternatively, one may also specify functional form using the
first four moments of the Beta distribution, which may require a constrained optimization of the
likelihood function.
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Empirical Application

The time-varying model not only addresses the dynamic characteristics of yield

distributions, but also provides a more flexible specification of heteroscedasticity and

higher order moments (e.g., skewness and kurtosis). We implement the time-varying

model by applying the methods to the top 10 counties in the major producing states

for corn, soybeans, cotton. These county/crop combinations include the following:

Iowa all-practice corn from Kossuth, Sioux, Pottawattamie, Plymouth, Webster,

Pocohontas, Hardin, Franklin, Clinton and Woodbury counties; Iowa soybeans from

Kossuth, Sioux, Pattawattamie, Plymouth, Webster, Woodbury, Benton, Grundy,

Crawford and Tama counties; Texas upland cotton from Gaines, Lubbock, Hockley,

Lynn, Dawson, Hale, Terry, Crosby, Floyd and Martin counties.7

It is widely recognized that the rate of technological progress varies considerably

across different crops. Our results are presented in figure 2 and demonstrate that

Iowa corn and soybean yields are skewed, kurtotic and exhibit strong time trend

effects and varying degrees of heteroscedasticity through time. In contrast, Texas

cotton yields appear to have a more modest time trend, though strong evidence of

temporal heteroscedasticity is exhibited.

The maximum likelihood estimates of this time-varying Beta distribution with a

linear time trend in the exponent and a quadratic time trend structure are shown in

table 1. A likelihood ratio test statistic of the two alternative models has a value of

4.12, which does not reject the null hypothesis that the quadratic trend parameters

are equal to zero and thus supports the adequacy of the linear specification.

7Although our choice of counties encompasses a significant proportion of the overall production
of each crop in the relevant states (and further reflects a significant amount of the GRP crop
insurance liability and premium), we also considered analysis for a much wider range of all counties
(for which data existed) in each state evaluated. The results were very consistent with what is
presented below. In order to conserve space, we only present results for the top ten counties in
prominent states for each crop. However, detailed results for other counties are available from the
authors on request. In addition, analysis of shorter series of yield data were also considered and
found to yield similar conclusions. These results are also available on request.
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The MLE estimates can be used to evaluate the time-varying Beta density for

any given year. Figures 2(d), 2(e) and 2(f) illustrate the dynamic evolution of the

densities that are estimated by each time-varying model for corn, soybeans and

cotton yields. Various moments of the distributions appear to evolve over time.

The density plots of these estimated time-varying distributions suggest different

means, skewness coefficients, and maximum values of corn yields for each year. In

figures 2(a), 2(b) and 2(c), we present estimated densities for both the time-varying

model and the more conventional detrended model. In every case, the time-varying

densities show a smaller degree of leptokurtosis than is the case for standard, two-

stage detrended yield data.

Table 2 presents log-likelihood values for the two alternative models for a number

of counties. In almost every case, the time-varying model provides a superior fit to

the data than the conventional model, even after adjustments (within the context

of alternative information criteria) for the number of parameters. This is also

illustrated in figure 3, which contains a side-by-side bar plot of the LLF values for

all major county/crop combinations considered in our analysis.8

Model Performance and Specification Tests

We considered a number of specification tests and evaluations of forecasting

performance of the alternative models. Vuong’s nonnested specification test (Vuong

(1989)) is a likelihood-based test for model selection. Vuong’s test statistic is given

by:

v =
n

1
2LRn(θ̂n, θ̃n)

ω̂n
(5)

8MLEs for these other counties are available upon request from the authors.
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where LRn(θ̂n, θ̃n) = Lfn(θ̂n) − Lgn(θ̃n), Lfn(θ̂n) is the maximum likelihood function

of the time-varying model and Lgn(θ̃n) is the maximum likelihood function of the

two-step model. ω̂n is defined as:

ω̂2
n =

1

n

n∑
t=1

(
log

f(Yt|Xt; θ̂n)

g(Yt|Xt; θ̃n)

)2

−

(
1

n

n∑
t=1

log
f(Yt|Xt; θ̂n)

g(Yt|Xt; θ̃n)

)2

The test statistic v is approximately distributed as a standard normal random

variable. As specified, if v > c, where c is the critical value9, we reject null that the

models are the same in favor of the alternative time-varying model Fθ. Alternatively,

if v ≤ −c, we would reject the null in favor of the detrended model Gθ. Vuong’s

test statistics v are presented in table 2 and in a majority of cases (87%) support

the time-varying specification.

Table 2 also presents goodness-of-fit comparisons for conventional models

(model I) and time-varying models (model II) based on the Akaike Information

Criterion (AIC) (Akaike (1974)) and Schwarz’s Bayesian Information Criterion

(BIC) (Schwarz (1978)). Smaller values of the AIC or BIC indicate a better

fit. Both figure 3 and table 2 show that the time-varying Beta has the lowest

AIC and BIC for most if not all counties, which indicates that it is the most

parsimonious and optimal model that we have considered in this article. Moreover,

∆AIC(∆AIC = AIC − min(AIC)) and ∆BIC(∆BIC = BIC − min(BIC))

in table 2 are significantly large for the conventional detrended Beta model,10

which also offers evidence in support of the time-varying model (see Burnham and

Anderson, 2003).

Table 3 presents the results of comparisons of ten-year, out-of-sample forecasts,

9We can choose a critical value c from the standard normal distribution that corresponds to
the desired level of significance (e.g. for c = 1.96; Pr(z ≥ | ± c|) = 0 : 05).

10As an example, ∆AIC = 88.16,∆BIC = 88.25 for detrended model for Webster county
soybean yields in Iowa.
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two-step-ahead forecasts and a cross validation (leave-one-out) test. The out-of-

sample forecast method essentially evaluates which method is better at forecasting

the first moment of yields. This, of course, has direct relevance for the estimation

of crop yield distributions and the subsequent rating of crop insurance contracts.

Note, however, that these tests only compare models in one aspect of the yield

distribution—the first moment (the mean). Thus, likelihood based specification

tests may provide more information about goodness of fit for the entire distribution.

The cross-validation method ranks competing models based on their out-of-

sample forecasting performance with some observations being randomly left out.

For example, the “leave-one-out cross-validation test” is conducted for all counties

considered for Iowa all-practice corn for the 82 years of county-level annual yields

from 1926 to 2007. We drop each observation from the sample, fit the model, and

use the estimates to forecast the omitted observation. The predicted and actual

yields are compared to get the cross-validation Root Mean Squared Error (RMSE)

in each period.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷ(i))2

where Ŷ(i) is the prediction for Yi obtained by fitting the model with observation i

omitted.

We sum the cross-validation errors and obtain the RMSE for the two competing

models. Results (table 3) indicate that the time-varying Beta distribution model

out-performs the constant Beta model in most of the major agricultural production

counties. Specifically, eight of the ten top Iowa corn production counties, nine of ten

Iowa top soybean production counties, and six of seven Texas top cotton production

counties exhibit a better cross-validation performance in the time-varying model.

The resulting RMSEs of the time-varying model for these yield data are smaller
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than that of the conventional model. The differences of the RMSE between the

two competing models are bigger for corn and cotton than soybeans. This is

consistent with what we have observed in the practice of genetic improvement and

biotechnological progress in agriculture. There have been less biotech innovations

for soybeans than for corn and cotton and therefore the yield distribution of

soybeans is less affected. As a result, the two competing methods do not make a big

difference in the out-of-sample predictive power for soybeans yields. In addition to

computing RMSEs, one may also compute the Spearman’s correlation between the

Yi’s and Ŷ(i)’s or generate a Q-Q plot to check other distributional characteristics

between the observed and (leave-one-out) predicted values.

In the current group risk crop insurance programs in the U.S., yields are forecast

two years into the future. These forecasts are then used to establish insurance

guarantees. In light of this, we considered an additional out-of-sample forecast

evaluation intended to provide an analog to the forecasts used in these area-

wide programs. In this approach, models are ranked based on their out-of-sample

forecasting performance for a series of two-year ahead and ten-year ahead forward

forecasts. For example, to predict 1993’s yield, the estimates are based on the

sample from 1926 to 1991; to predict 1994’s yield, the estimates are based on the

sample from 1926 to 1992, etc.

Another out-of-sample test is conducted by partitioning the entire sample into

two parts and estimating parameters based on the first part of the data for the

period 1926 to 1997 (the first 72 observations), then the estimated parameters are

used to compute the expected (mean) yields for the out-of-sample period spanning

1998 to 2007 (the second part of the data). The mean of the squared difference

between the predicted value and the actual yield value is calculated as a “leave-ten-

out” forecast error RMSE10.
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The out-of-sample measures are computed for selected major crop/county

combinations in the U.S. and such predictive measures again provide comprehensive

evidence that the time-varying approach represents an improvement across all

criteria considered. Table 3 shows that time-varying model has smaller values of

both RMSE2 and RMSE10 in most cases. Having noted this, we must point out

that the out-of-sample comparison test is only based on the accuracy of first moment

mean prediction, which is not an overall evaluation of the entire yield distribution.

Since the time-varying model is an alternative to the conventional two-stage model

to estimate the yield distribution and to forecast the mean, these two models may

display different out-of-sample performance based on different yield data in terms

of mean prediction. Recall that strong evidence, as presented in table 2, supports

the time-varying model’s performance in estimating the entire yield distribution in

terms of likelihood based tests and nonnested model distribution tests.

Table 4 presents alternative methods to comparing the two competing models.

By using a regression method, we can consider which model’s predicted values better

explain the variation of the actual yields. To this end, we regress actual yields on

each of the alternative predictions. The results indicate that only the coefficient

on predicted yields from the time-varying model is significantly different from zero,

which suggests the time-varying model yields a better prediction of the actual yield.

Further, the intercept term is also not significantly different from zero, indicating

that the chosen model has no systematic bias. Likewise, the coefficient on the time-

varying model prediction is not significantly different from one, suggesting that the

chosen model has no scale bias.
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Simulation of a Group Risk Insurance Program

Yield–based insurance policies in the federal crop insurance program include the

individual, farm-level multiple peril crop insurance (MPCI) and the county-level

Group Risk Plan (GRP), which is based upon county-average yields from NASS.

An important policy parameter in the GRP program is the premium rate, which

is based on the county-average yield distribution. In this section, we evaluate

the economic impacts of adopting rates based on the time-varying distribution

methods. If the yield distributions change over time, premium rates should be

adjusted accordingly. The premium rates from the proposed time-varying approach

are illustrated with simulated data and a rate cross-validation test is conducted

to compare the predictive accuracy of the premium rates from the time-varying

approach with those of the conventional two-stage approach. Standard crop yield

insurance pays an indemnity at a predetermined price to replace yield losses. Under

the GRP, insured farmers collect an indemnity if the county average yield falls

beneath a guarantee, regardless of the farmers’ actual yields. Loss probabilities

correspond to the likelihood that yields y below some threshold will be observed,

which is given by the area under the density curve to the left of the guaranteed

yield. Consider an insurance contract that insures some proportion (λ ∈ (0, 1))

of the expected crop yield (ye). If y < λye, the insurer will pay (λye − y)p as an

indemnity, where p is a predetermined price. An actuarially fair premium is defined

by the expected loss of this contract, which takes the form of

E(Loss) = E[(λye − y)I(y ≤ λye)]p = E[(λye − y)+]p (6)

where a+ = max(0, a) for a number a ∈ R. In the preceding discussion, y denotes

the observed annual county level yield and ye represents the predicted (guaranteed)
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yield. Calculation of expected loss requires estimation of the distribution of yields.

We compare the conventional two-stage estimation method to the proposed time-

varying distribution in terms of expected loss and premium rates.

In our simulation, one million yields are generated from the time-varying Beta

distributions. The probability of yield loss, the expected yield loss, and the

actuarially fair premium rate associated with a contract that guarantees 75 percent

of the expected yield is calculated for each year. As shown in figure 4, the premium

rates range from 0.83 percent in 1985 to 0.36 percent in 2006 for the case in which

the yields are from the time-varying model. The rates change as the moments

of the time-varying distribution evolve. In contrast, the premium rates calculated

from a conventional two-stage Beta distribution model (model I) indicate a constant

premium rate around 1.88 percent from 1927 to 2006 (figure 4). For crop insurance

in 2006, the premium rate from the detrended Beta model is 1.52 percentage points

higher than the premium from the time-varying Beta model (0.36 percent versus

1.88 percent). Thus, the conventional model tends to significantly over-price the

same level of coverage.

Rate cross-validation is proposed to measure the predictive accuracy of premium

rates of one model when the alternative model is true. Rate cross-validation can be

tested as follows:

Step 1: Assume one of the alternative yield distribution models, denoted by

j, is true and simulate a set of actuarially fair premium rates (denoted as

rtruej ,t).

Step 2: Simulate 1000 sets of 80 pseudo-observations of corn yields from the

corresponding true yield distribution.

Step 3: Obtain 1000 sets of MLEs based on these pseudo-observations; then
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calculate the pseudo actuarially fair premium rates (denoted as rj′ ,t) based

on the MLEs.

Then we can compare the pseudo premium rates with the true rates and obtain the

Mean Percentage Error (MPE) and the Root Mean Squared Error(RMSE).

Cross-validation demonstrates a smaller MPE and RMSE for the time-varying

model. As is shown in table 4, when the true rate is derived from the conventional

model (with an average rate equal to 0.0188), the mean squared error (MSE) of

predicted rates of the time-varying model is 0.0087, which is 9.58% lower than

the MSE (0.0097) obtained from the conventional model when the alternative (the

average premium rate implied by the time-varying model is 0.0058) is true. In

addition, the MPE is 0.45 for the time-varying model and 1.66 for the detrended

model. Smaller MPE and MSE values indicate that the time-varying model is more

accurate, flexible, and robust in terms of premium rate prediction. This prediction

error can also be expressed in economic terms. For example, for a crop insurance

contract with $1000 liability per acre, the rate cross-validation error of the premium

is $8.68 for the time-varying model. The rate cross-validation error of the premium

is $9.60 for the conventional model. Therefore, the predicted premium error of

the time-varying model is $0.92 less than the detrended model per unit of insurance

($1, 000 of total liability in this example). In light of the fact that the total premium

in the federal crop insurance program in 2009 was nearly $80 billion, pricing errors

can result in substantial aggregate losses. Consequently, the accuracy of insurance

rates is improved by applying the time-varying yield distribution model.
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Conclusions

This study has examined the accuracy of alternative methods for measuring

conditional yield risk under technological change. We propose a method for

incorporating trends in the yield distribution that may offer a more accurate

and consistent method for estimating the distribution of crop yields than other

approaches commonly used in the literature. This method involves simultaneously

estimating the time trend effects and the parameters of the yield distribution

and therefore overcomes possible shortcomings associated with the more common

approach of treating the detrended yields as “observed” data rather than data

estimated from a previous detrending model.

Several model selection tools are used to compare the in-sample goodness of fit

and out-of-sample predictive power of the alternative models. The results show that

the proposed time-varying model is superior to the conventional two-stage model in

terms of providing a better fit (in terms of lower AIC and BIC criteria) and stronger

out-of-sample predictive power for most of the major county/crop combinations.

The results of out-of-sample prediction tests are consistent with prior expectations

based on technological progress and biotechnology. In particular, multiple biotech

traits and genetic improvements have occurred for corn and, to a lesser degree,

for cotton. Much of the biotech innovations for soybeans have mainly involved

herbicide tolerance. The proposed time-varying method therefore appears to offer

greater improvement for corn and cotton than is the case for soybeans.

In a rate simulation exercise, the premium rate derived from the time-varying

model showed significantly decreasing premium rates (from 0.83 percent in 1985 to

0.36 percent in 2006) over time, while the conventional model implied a constant

rate (1.88 percent). A method of “rate cross-validation” demonstrated that the

time-varying distribution model may offer significant advantages, even when the
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underlying yield trend process is misspecified.

Overall, this analysis reveals a dynamic evolution of yield distributions under

technological change for major U.S. crop yields. In our data, which represents

county-level yields for important crops in major growing areas, we find that the

time-varying model provides a superior fit to the data. This study has policy

implications that relate to improving the accuracy of assessing yield distributions in

cases where parameters of the distribution evolve over time. When the distributions

change, premium rates can be adjusted to represent the most recent information.

This offers the potential to improve the accuracy of models used in rating crop

insurance contracts and thus may improve risk management mechanisms to protect

producers from risk. The improved time-varying method has practical implications

for the GRP and GRIP programs as well as the design of other insurance contracts.

Our applications assume a Beta distribution for each year. Future research may

benefit from relaxing this assumption by using more flexible models such as a

mixture of Beta distributions and nonparametric methods.
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(a) Yield Trend of Different Crops (1970-2007)

(b) Residual Plot of Annual Corn Yield, Adair County, Iowa

Figure 1: Scatter Plot and Residual Analysis
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(a) Corn Yield Distribution of 2006:
Detrended Beta vs. Time-Varying Beta

(b) Soybeans Yield Distribution of 2007:
Detrended Beta vs. Time-Varying Beta

(c) Cotton Yield Distribution of 2007:
Detrended Beta vs. Time-Varying Beta

(d) 10-year Overlay Beta Density Plot for
Corn

(e) 5-year Overlay Beta Density Plot for
Soybeans

(f) 5-year Overlay Beta Density Plot for
Cotton

Figure 2: Estimated Time-Varying Beta Densities, Major Crop Yields in the U.S.
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(a) LLF Comparison—Iowa Corn Yields

(b) LLF Comparison—Iowa Soybeans
Yields

(c) LLF Comparison—Texas Cotton Yields

Figure 3: In-Sample Goodness-of-Fit Comparison of the Two Competing Models:
LLF 22



Figure 4: Premium Rates (for a 75% Coverage Level Crop Insurance Contract) for
Time-Varying Model and Detrended Model (1985-2006)
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Table 1: Maximum-Likelihood Parameter Estimates and Summary Statistics for
Two-Stage Model and Time-Varying Models: Example for Adair County Corn
Yieldsc

. . . . . . . . . . . . . . . Two-Stage Model Based on Detrended Yield Data . . . . . . . . . . . . . . .

. Four-Parameter Beta (LLF = -378.69) . . . Three-Parameter Beta (LLF = -380.67) . .

Parameters Estimates Std. Error Parameters Estimates Std. Error

shape1(α) 5.99 0.21∗ shape1(α) 5.99 0.19∗

shape2(β) 2.10 0.23∗ shape2(β) 2.07 0.23∗

location(θ) 0.97 7.85 - - -
scale(δ) 203.43 1.04∗ scale(δ) 204.13 1.07∗

. . . . . . . . . . . . . . . Time-Varying Models Based on Actual Yield Data . . . . . . . . . . . . . . .

Linear Trend Structurea (LLF = -328.68) Quadratic Trend Structureb (LLF = -326.62)

Parameters Estimates Std. Error Parameters Estimates Std. Error

b1 2.38 0.32∗ b1 2.55 0.10∗

b2 0.43 0.75 b2 0.16 0.40
b3 — — b3 -0.29 0.50
b4 4.02 0.32∗ b4 2.95 0.10∗

b5 -2.71 1.29∗ b5 -1.63 0.30∗

b6 — — b6 -2.61 4.8
b7 7.47 14.99 b7 12.26 117.70
b8 -7.50 18.14 b8 -15.27 138.15
b9 — — b9 -13.72 90.03

Time-Varying Models: LLF(L): L1: -328.68 L2: -326.62
LRT Statistics: −2(L1− L2) = 4.12 χ2

4 p-value = 0.39

Notes: An asterisk * denotes statistical significance at the α = 0.05 or smaller level
a the Time-Varying Beta Model with a linear trend structure is defined as: yt ∼
(αt, βt, 0, δt) αt = exp(b1 + b2t̃); βt = exp(b4 + b5t̃) δt = exp(b7 + b8t̃)
b the Time-Varying Beta Model with a quadratic trend structure is defined as: yt ∼
(αt, βt, 0, δt) αt = exp(b1 + b2t̃+ b3t̃

2); βt = exp(b4 + b5t̃+ b6t̃
2); δt = exp(b7 + b8t̃+ b9t̃

2)
c Examples for other crops and counties are available from the author on request.
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Table 2: Model Comparison Using In-Sample Goodness-of-fit Test and Non-nested
Vuong’s Test for Major Agricultural Yields

Detrending Model–Model I Time-Varying Model–Model II
County K LLF AIC/∆AIC BIC/∆BIC K LLF AIC BIC va

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iowa All-Practice Corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kossuth 6 -386.90 785.80/129.17 785.28/129.17 6 -322.32 656.63 656.11 11.41∗

Sioux 6 -398.085 808.17/143.62 807.65/143.62 6 -326.27 664.55 664.03 7.93∗

Pottawattamie 6 -406.25 824.50/125.06 823.98/125.06 6 -343.72 699.44 698.92 12.61∗

Plymouth 6 -406.47 824.94/133.44 824.43/133.44 6 -339.751 691.50 690.98 14.03∗

Webster 6 -400.63 813.25/130.30 812.73/130.30 6 -335.48 682.95 690.98 13.15∗

Pocohontas 6 -401.21 814.42/125.83 813.91/125.83 6 -338.30 688.60 688.08 12.95∗

Hardin 6 -379.19 770.39/102.23 769.87/102.23 6 -328.08 668.16 667.64 10.76∗

Franklin 6 -381.39 774.79/108.04 774.27/108.04 6 -327.37 666.75 666.23 8.55∗

Clinton 6 -364.70 741.39/94.04 740.87/94.04 6 -317.67 647.35 646.83 8.99∗

Woodbury 6 -401.22 814.45/133.34 813.93/133.34 6 -334.557 681.11 680.60 14.81∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iowa Soybeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kossuth 5 -267.22 544.44/102.06 544.01/102.15 6 -215.19 442.38 441.86 8.73∗

Sioux 5 -345.65 701.3/233.88 700.87/233.97 6 -227.71 467.42 466.90 5.36∗

Pottawattamie 5 -300.17 610.34/126.22 609.91/126.31 6 -236.06 484.12 483.60 8.27∗

Plymouth 5 -302.13 614.26/136.72 613.83/136.81 6 -232.77 477.54 477.02 8.72∗

Webster 5 -271.26 552.52/88.16 552.09/88.25 6 -226.18 464.36 463.84 8.79∗

Woodbury 5 -244.77 499.54/73.28 499.11/73.37 6 -207.13 426.26 425.74 9.01∗

Benton 5 -251.3 512.60/73.02 512.17/73.11 6 -213.79 439.58 439.06 9.57∗

Grundy 5 -244.77 499.54/73.28 499.11/73.37 6 -207.13 426.26 425.74 9.01∗

Crawford 5 -285.52 581.04/118.08 580.61/118.17 6 -225.48 462.96 462.44 6.07∗

Tama 5 -257.38 524.76/89.44 524.33/89.53 6 -211.66 435.32 434.80 9.77∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Texas Upland Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gaines 6 -268.23 548.46/27.38 547.94/27.38 6 -254.54 521.08 520.56 1.84

Lubbock 6 -269.56 551.12/38.22 550.60/38.22 6 -250.45 512.90 512.38 5.11∗

Hockley 6 -270.87 553.74/50.14 553.22/50.14 6 -245.8 503.60 503.08 8.70∗

Lynn 6 -261.55 535.1/29.56 534.58/29.56 6 -246.77 505.54 505.02 6.67∗

Dawson 6 -264.87 541.74/32.74 541.22/32.74 6 -248.5 509 508.48 8.48∗

Hale 6 -279.65 571.3/77.94 570.78/77.94 6 -240.68 493.36 492.84 2.33∗

Terry 6 -264.96 541.92/40.34 541.40/40.34 6 -244.79 501.58 501.06 1.42
Crosby 6 -261.55 535.1/35.86 534.58/35.86 6 -243.62 499.24 498.72 1.29

Floyd 6 -268.92 549.84/37.26 549.32/37.26 6 -250.29 512.58 512.06 1.27
Martin 6 -260.08 532.16/8.86 531.64/8.86 6 -255.65 523.30 522.78 2.00∗

Notes: An asterisk * denotes statistical significance at the α = 0.05 or smaller level. K is the number of parameters
in a model. “a” is the Vuong’s test statistics for time-varying model vs. detrending model.
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Table 3: Out-of-Sample Performance

Detrending Model–Model I Time-Varying Model–Model II

County RMSE RMSE2 RMSE10 RMSE RMSE2 RMSE10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Iowa All-Practice Corn . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kossuth 14.54 22.21 22.62 14.52∗ 14.72∗ 10.26∗

Sioux 13.52∗ 16.02 23.55 13.74 15.27∗ 14.56∗

Pottawattamie 16.44 22.45 15.28∗ 16.05∗ 21.85∗ 19.13
Plymouth 15.57 19.45∗ 19.54∗ 15.56∗ 22.25 19.67
Webster 19.49 20.73 12.66 15.89∗ 17.72∗ 11.86∗

Pocohontas 16.52∗ 22.13∗ 26.32∗ 16.58 22.19 29.18
Hardin 15.09 21.62 20.12 14.87∗ 19.13∗ 16.41∗

Franklin 14.95 23.48∗ 18.51 14.50∗ 23.68 10.95∗

Clinton 15.86 19.31∗ 24.17∗ 15.51∗ 19.57 26.63
Woodbury 14.76∗ 22.97 27.81 14.79 18.51∗ 16.12∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iowa Soybeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kossuth 4.12∗ 7.47 7.63 4.14 7.44∗ 7.60∗

Sioux 4.18 5.13 5.67∗ 4.13∗ 4.82∗ 6.37
Pottawattamie 4.75 6.28 6.09∗ 4.73∗ 5.95∗ 6.27

Plymouth 4.74 4.73 5.06∗ 4.64∗ 4.06∗ 6.43
Webster 4.38 6.53∗ 6.36∗ 4.36∗ 6.61 6.92

Woodbury 3.74 6.09 5.82 3.69∗ 5.98∗ 5.71∗

Benton 4.38 6.82 6.47 4.07∗ 5.61∗ 6.23∗

Grundy 3.74 6.09 5.82 3.69∗ 5.98∗ 5.71∗

Crawford 4.60 6.29 6.32 4.50∗ 6.12∗ 6.23∗

Tama 3.99 6.67 6.20 3.96∗ 6.56∗ 6.18∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .Texas Upland Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gaines 130.72∗ 217.85 307.04∗ 130.90 217.23∗ 307.96
Lubbock 143.34 157.72 185.53∗ 128.04∗ 182.61∗ 196.43
Hockley 116.39 143.07∗ 194.23 100.13∗ 159.50 192.15∗

Lynn 118.05 153.87 180.65 116.46∗ 136.78∗ 171.73∗

Dawson 105.05∗ 96.13 84.69∗ 108.61 84.38∗ 163.53
Hale 155.32 187.42 239.46 113.24∗ 130.92∗ 116.32∗

Terry 112.48∗ 174.85 277.63 129.23 133.25∗ 150.56∗

Crosby 127.25 144.48∗ 153.71∗ 114.38∗ 165.91 161.32
Floyd 181.32 187.05 234.51 130.37∗ 158.82∗ 150.56∗

Martin 146.23∗ 163.43 150.37∗ 148.57 153.27∗ 155.54

Note: an “*” indicates a smaller out-of-sample predicted error in the two competing
models.
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Table 4: Other Model Comparison Methods

. . . . . . . . . . . . . . . . . . . . . . . . . . .Compared by Regression Method . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter p

Variable Estimate Valuea

Intercept -0.125 0.970
γ1:Coefficient of Prediction Value of Detrended Beta -0.065 0.890

γ2:Coefficient of Prediction Value of Time-Varying Beta 1.068 0.034∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean of True Rates from Mean of True Rates from
Conventional Model Time-varying Model

(0.01887) (0.0058)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conventional Predicted Rate (RMSE) 0 0.098

Time-varying Predicted Rate (RMSE) 0.093 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean Percentage Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conventional Predicted Rate (MPE) 0 1.66

Time-varying Predicted Rate (MPE) 0.45 0

Note: a: an “*” indicates statistical significance at the α = .10 or smaller level.
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