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Directional Spatial Dependence and Its Implications for Modeling

Systemic Yield Risk

Ying Zhu, Sujit K. Ghosh and Barry K. Goodwin

Abstract:

The objective of this study is to evaluate and model the spatial dependence of systemic

yield risk. Various spatial autoregressive models are explored to account for county level

dependence of crop yields. The results show that the time trend parameters of yields are

correlated across spaces and the spatial correlations are changing with time. In addition, the

spatial correlation of neighborhood in west/east direction is stronger than that of north/south

direction. The information of the spatial dependence of yield risk will help the construction

of better risk management programs for protecting producers from systemic yield risks.
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1 Introduction

Yield risk for a given crop can differ systematically over space due to the changing agronomic

conditions, such as climate and soil type. The concept of spatial correlation is important in

crop insurance due to systemic risk. It’s been argued that the causes of crop insurance market

failure is systemic risk (Miranda and Glauber (1997)). Systemic risk in agriculture come from

the fact that adverse weather events usually induce substantial correlations among counties.

As a result, yields are usually spatially correlated and yield shortfalls in a particular area

such as a county or state are likely to be correlated with yield shortfalls in the neighboring

counties.

U.S. crop insurers face portfolio risk due to high level of systemic risk. High level of

systemic risk undermines a crop insurer’s ability to diversify risk across space and prevents

it from performing the function of pooling risk across farmers. Economic motivation of using

spatial models comes from the fact that counties differ in their agricultural production which

might be rooted in weather and soil type differences that vary smoothly over space. Modeling

the spatial correlation between yield losses in different counties and measurement of the

systemic crop yield risk will give implication for insurablity, risk management, reinsurance

and crop insurance pricing, as well as help conduct better risk management of systemic risk

and maintain consistency of premium rates among contiguous counties. As an example, in

the Group Risk Plan (GRP), coverage and indemnities are based on a given geographical

area. All farmers in this region pay the same premium and receive the same indemnity per

unit of insurance according to a county index that is the basis for determining a loss. A

representative area-yield insurance plan requires carefully investigated spatial correlation of

crop yield losses so that the reasonable range and shape of the geographical area can be

considered in the design of the optimal GRP. Premium rates based on arbitrary smoothing

area yields could lead to increased program losses due to adverse selection. Accurately

modeling contiguous county information in the construction of insurance contract is thus

very important for risk management of systemic crop risk.
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The primary goal of this study is to measure the systemic crop loss risk by exploring the

spatial dependence structure of crop yields. The focus is on modeling the spatial correlation

parameter between crop yields across space (both in contiguity condition and direction). To

model the spatial correlation of yields and capture the neighborhood-level spatial effects, an

autoregressive model (AR) holds promise. AR model includes the conditional autoregressive

model (CAR) and the simultaneously autoregressive model (SAR). An AR model is the model

incorporating the discrete neighborhood information and pools innovations from contiguous

counties. Thus, it reduces the sampling variance of the estimated conditional distribution

of the central county. In the AR model, a neighborhood structure based on the shape of

the lattice is defined. Thus, instead of measuring the distance between centroids of regions,

a system is used to define regions to be neighbors based on whether their borders touch or

not. Once the neighborhood structure is defined, models similar to time series autoregressive

models are considered. The estimated rate of spatial correlation may depend not only on

the way the regions are connected, but also on the direction that they are separated. This

study uses a directional autoregressive (DAR) model to estimate the spatial pattern and

the correlation parameter between crop yields through space. Estimation results will have

implications on how strong the spatial dependence is for observations from nearby regions

to be more (or less) alike than observations from regions farther apart. This information of

the variation of the spatial correlation across space can provide insights into the design of

the area-yield contract and the agricultural risk management policy.

2 The Econometric Model

2.1 Spatial Correlation for Lattice Data

In many settings, average yields over geographically defined region such as a county or a

state are observed and regression or classification analysis is performed. In general, given a

lattice which consist of a set of sub-region S1, . . . , SI , a generalized linear model can be used
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for the aggregated crop yields Yt.

Yt = µt + ηt (1)

where Yt = (y1t, . . . , yIt) = (yt(S1), . . . , yt(SI)) are area yields and µt = (µ1t, . . . , µIt)

represents a vector of large scale variations (for example, time trend) over region Si. Usually,

it is modeled as a deterministic function of some explanatory variables such as time, weather

and other area level covariates. In other words, µit = Xiβi, where Xi = (Xi1, . . . , XiT ), and

Xi are explanatory variables in sub-region S(i); βi is a set of finite dimensional parameter.

ηt = (η1t, . . . , ηIt) represents a vector of small-scale variations (i.e. spatial random effects)

with zero mean and variance-covariance Σt (ηt ∼ (0,Σt)). In crop insurance literature,

the part of modeling the large scale variation is well illustrated. For example, µt can be

modeled using parametric or semiparametric model (Goodwin and Ker (2001)). However,

it is less discussed in the literature how to model for the spatial random effect ηt as they

are spatially correlated and the positive definiteness condition of the induced covariance

structure needs to be specified. Issues related to spatially autocorrelated disturbance terms

need to be considered in estimating the area yields. For example, whether there is any

apparent tendency in the residual term that may not come from a random chance alone. The

CAR and SAR models are spatial models which include the spatial correlation parameters

to control the strength of spatial correlation. These models can be used in modeling the

county-level regional yield data.

2.2 Conditional and Simultaneously Spatial Autoregressive Model

AR model is a method to model yt based on the first-order auto-regression on the average of

its neighbors’ response. In the AR model, the spatial dependence ρ is incorporated into the

covariance structure via an autoregressive model. We could adopt a AR for the deviations

of yields from their site–specific means and carry out maximum likelihood to estimate the
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model.

Let Yt = (y1t, . . . , yIt)
T denote the crop yield at ith location in year t, i = 1, . . . , I,

Ni is the set of neighbors of location i. Locations i = 1, . . . , n forms a lattice. ni is the

number of those neighbors of location i. The spatial dependence or spatial correlation is

measured through the parameter ρ.1 The mean of Yit can be modeled as functions of the

fitted residuals from neighboring plots. The rationale is that if the plots that are neighbors

of plot i have negative residuals indicating that they are of below–average yields for this

county then county i is likely to be below average in average yield as well. This suggests

using the average of residuals from a county’s neighbors as a factor to explain the mean of

Yit.

The AR model requires structure on the spatial smoothing. One way to specify the shape

of the regions is to use a neighborhood matrix W which indicates whether the regions touch

or not. The rows and columns of this matrix correspond to the observations. We assume

the element in the matrix W to be equal to 1 if two regions are neighbors and 0 if the two

regions are not neighbors. Define W = (wij), where W is an n × n matrix whose nonzero

elements specify the neighboring times of each yield data point:

wij =


1 if region i shares a common edge or border with region j,

0 if i=j,

0 otherwise
By using the notation of the neighborhood matrix, the conditional distribution of yit is

as follows:

yit|yj 6=i,t ∼ N(µit + ρt
∑
j∈Ni

wij(yjt − µjt),
σ2
t

ni
) (2)

where µit = β0i + β1it. µit can also be modeled more generally by using non-parametric

regression method. The conditional mean of E(yit|yj,t) = µi,t + ρt
∑

j∈Ni
(yj,t − µj,t), and

the conditional variance is
σ2

t

ni
. ρt is referred to as ‘spatial correlation or spatial dependence’

parameter and controls the strength of spatial association.
∑

j∈Ni
wij(yjt−µjt) is a weighted

1ρ can be explained as the spatial correlation between neighbor counties.
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average of the spatial effects for all neighbors of location i other than itself.

By Brook’s lemma, the joint distribution of Yt in matrix notation is as follows:

Yt = (y1t, . . . , yIt)
′ ∼ (µt, σ

2
t (I − ρt ∗ w)−1D) (3)

where D = diag( 1
n1
, . . . , 1

nn
) and ni =

∑
j 6=iwij is the number of neighbors at each location

Si.

The AR model specified in this way with a single parameter times some weighting ma-

trix has been used extensively for modeling irregular lattices in applied econometrics. (e.g.

Anselin and Florax (1995), Kelejian and Prucha (1999), and Anselin(2002)). The maximum

likelihood estimation method can be carried out to estimate the model.

The likelihood function L(θ) is defined as follows. The parameters in this model are

θ = (β01, . . . , β0I , β11, . . . , β1I , β21, . . . , β2I , σ
2
1, . . . , σ

2
T , ρ1, . . . , ρT ).

L = |σ2
t (I − ρtw)−1D|−

1
2 exp(−1

2
(Yt − µt)′(σ2

t (I − ρtw)−1D)−1(Yt − µt))

where µt = (µ1t, . . . , µIt)
′
, D = diag( 1

n1
, . . . , 1

nI
) and ni =

∑
j 6=iwij. Then the log-likelihood

function LLF (θ) is:

LLF =
∑
t

(log σ2
t − log |I − ρtw|+

1

σ2
t

(Yt − µt)′D
1
2 (I − ρtw)D

1
2 (Yt − µt))

2.3 Directional Spatial Autoregressive Model

One of the limitations of the AR model is that the neighbors are formed using a neighborhood

matrix and it assume the same spatial correlation in all directions by assigning equal weight

to all directions. This is counter-intuitive for the spatial correlation of crop yields. Usually,

due to the bigger weather similarity of West-East (W-E) direction than South-North (S-N)

direction, the yields distribution between the west and east should be more similar than that
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of the north-south. Thus, we can expect that the spatial correlation between W-E should be

bigger than that of S-N. In order to incorporate the idea of directional effects in the spatial

correlation, a directional AR model (DAR) are proposed in this study. In some recent

literature, there have been some attempts to use different CAR models for different parts of

the region. White and Ghosh (2008) develop a CAR model with stochastic parameters to

determine effects of the neighborhood. Kyung and Ghosh (2008) present a directional CAR

(DCAR) model to accommodate spatial variations by using different weights to neighbors in

different directions in a Bayesian framework.

Here we adopt the Kyung and Ghosh (2008)’s DCAR approach to estimate the spatial

correlation of crop yields in different regions in the U.S. and the estimated spatial correlation

will make implications to price group insurance plan such as Group Risk Plan (GRP).

The subset based on different directions are denoted as Nik, where k stands for different

direction. For example, if there are two directions (S-N and W-E), Ni1 and Ni2 can be con-

structed based on the associated S-N and W-E neighborhoods. The directional neighborhood

matrices are W (1) = ((ω1
ij)) and W (2) = ((ω2

ij)), respectively. That is,

wkij =


1 if region i shares a common edge or border with region Nik,

0 if i=j,

0 otherwise

Notice that W = W (1) +W (2) are the same neighborhood matrix as in the regular model.

Based on the directional neighborhood matrix W , a DAR model can be developed to

account for anisotropy.

Let ρ
(1)
t and ρ

(2)
t denote the directional spatial effects corresponding to Ni1 and Ni2. ρ

(1)
t

and ρ
(2)
t are the S-N and W-E spatial correlation respectively. The distribution of Y (Si)

conditional on the rest of Yt can be expressed based on the first two moments:

where ω
(k)
ij ≥ 0 and ωkii = 0 for k = 1, 2 and mi =

∑2
k=1

∑n
j=1 ωij

The directional spatial correlations are defined as ρ
(1)
t and ρ

(2)
t . ρ

(1)
t and ρ

(2)
t are the S-N

and W-E spatial correlation respectively.
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The joint distribution of Y is:

Yt = (y1t, . . . , yIt)
′ ∼ N(µt, σ

2
t (I − ρ

(1)
t w(1) − ρ(2)

t w(2))−1D), t = 1, . . . , T (4)

The likelihood function L(θ)is:

L = |σ2
t (I − ρ

(1)
t w(1) − ρ(2)

t w(2))−1D|−
1
2 exp(−1

2
(Yt − µt)′(σ2

t (I − ρ
(1)
t w(1) − ρ(2)

t w(2))−1D)−1(Yt − µt))

where θ = (β01, . . . , β0I , β11, . . . , β1I , β21, . . . , β2I , σ
2
1, . . . , σ

2
T , ρ

(1)
1 , . . . , ρ

(1)
T , ρ

(2)
1 , . . . , ρ

(2)
T ). The

number of parameters to be estimated is 3 ∗ I + 3 ∗ T with sample size equal to I ∗ T . We

need I ∗ T > 3 ∗ I + 3 ∗ T which is satisfied if I > 6 and T > 6. To avoid large dimensional

optimization for θ, we estimate the MLE for the spatial parameters at each time points t.

The optimization is done by using the optim package in R.

The log-likelihood function LLF (θ) is:

LLF =
∑
t

(log σ2
t − log |I − ρ(1)

t w(1) − ρ(2)
t w(2)|+ 1

σ2
t

(Yt − µt)′D
1
2 (I − ρ(1)

t w(1) − ρ(2)
t w(2))D

1
2 (Yt − µt))

3 Data

The county-level corn yields data from Iowa are used in this analysis. The lattice is formed

by the counties of a Iowa. The centroid data of each county is used to calculate the direction

of the spatial correlation. Iowa is in the central Corn belt where climate and soil are ideal

for corn production, so the corn yield volatility will tend to be low in this state. 99 counties

Iowa all-practice corn yield data are selected from the time period of 1926-2007. By using the

CAR model, the state level average yields is obtained which will take the spatial correlation

into consideration. The same methodology can be used to obtain the county-level yield

estimate if the lattice of farm-level data is available.
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4 Estimation Results and Economic Implications

The trends of yields are found to be different across space (figure 1 and 2). The estimates

of the spatial correlation are found to be varying in time with an average spatial correlation

equal to 0.17 by using autoregression model. If the directional effect is taken into account,

the spatial correlation of west-east (W-E) is greater than the spatial correlation of north-

south (N-S) (0.19 vs. 0.15 in average) as shown in figure 3, which is consistent with the

agricultural production practice. The directional effect is expected to be more significant

for larger geographic units. The different spatial correlations in directions justify the need

of using directional effects in modeling the spatial correlation of yields.

Moreover, the pairwise spatial correlation between any two different location Si and

Sj can be obtained with the information of neighborhood weighting matrix wij and the

estimated ρ, although the estimated spatial correlation ρ in the AR model does not have a

linear relationship with the implied neighbor correlation. Implications for optimal area-yield

insurance program can be drawn from the estimates of spatial correlation and any pairwise

spatial correlation analysis. If we want to design crop insurance contract with large spatial

regions, this DAR model is a powerful tool to capture spatial trends that may be presented

in the data. The estimated distance and directions in which the area crop yields from the

state are significantly spatially correlated will give implications to the range and the shape of

the geographical area to be considered in measuring yield risk and design of reinsurance and

the area-yield index for the GRP. The implied spatial correlation between different counties

should help accurately measure the systemic yield risk and thus improve the efficiency of

risk management.

An extension of the spatial analysis will go to the spatial correlation for different crops,

e.g.,corn and soybeans, by using a copula approach in the DAR model. The county-level

corn and soybean yield data from Iowa state can be used in this analysis. The bivariate

distribution obtained in the copula analysis allows for an analysis of the higher-order spatial

relationships and higher-order cross-moments of crop yields. These can be used in the
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design of area-yield insurance contracts that account for the spatial correlation of different

crop yields. The questions addressed in the spatial analysis for bivariate crop yields include

whether it is appropriate to use one bivariate distribution, a Clayton copula as an example,

over a certain geographical area for corn and soybean yields; and whether the decay rate

of the spatial correlation in bivariate case is similar to that in univariate case. If not, the

pattern of the change in the parameters of bivariate distribution needs to be captured by

the spatial analysis to make policy implication to the optimal shape and size of geographical

area in the combination area-yield insurance design.
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Figure 1: Scatter Plot of Corn Yields v.s. Time—Selected Counties in Iowa
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Figure 2: Space Time Plots of Regression Coefficients
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Figure 3: Temporal Plot of Directional Autoregression Model
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