3,962 research outputs found

    Field-dependent quantum nucleation of antiferromagnetic bubbles

    Full text link
    The phenomenon of quantum nucleation is studied in a nanometer-scale antiferromagnet with biaxial symmetry in the presence of a magnetic field at an arbitrary angle. Within the instanton approach, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively. Our results show that the rate of quantum nucleation and the crossover temperature from thermal-to-quantum transitions depend on the orientation and strength of the field distinctly, which can be tested with the use of existing experimental techniques.Comment: 21 pages, 5 figures, Final version and accepted by Eur. Phys. J

    Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands

    Full text link
    Recent proposals of topological flat band (TFB) models have provided a new route to realize the fractional quantum Hall effect (FQHE) without Landau levels. We study hard-core bosons with short-range interactions in two representative TFB models, one of which is the well known Haldane model (but with different parameters). We demonstrate that FQHE states emerge with signatures of even number of quasi-degenerate ground states on a torus and a robust spectrum gap separating these states from higher energy spectrum. We also establish quantum phase diagrams for the filling factor 1/2 and illustrate quantum phase transitions to other competing symmetry-breaking phases.Comment: 4 pages, 6 figure

    Shakura-Sunyaev Disk Can Smoothly Match Advection-Dominated Accretion Flow

    Get PDF
    We use the standard Runge-Kutta method to solve the set of basic equations describing black hole accretion flows composed of two-temperature plasma. We do not invoke any extra energy transport mechanism such as thermal conduction and do not specify any ad hoc outer boundary condition for the advection-dominated accretion flow (ADAF) solution. We find that in the case of high viscosity and non-zero radiative cooling, the ADAF solution can have an asymptotic approach to the Shakura-Sunyaev disk (SSD) solution, and the SSD-ADAF transition radius is close to the central black hole. Our results further prove the mechanism of thermal instability-triggered SSD-ADAF transition suggested previously by Takeuchi & Mineshige and Gu & Lu.Comment: 10 pages, 2 figures, accepted for publication in ApJ Letter

    EFFECTS OF SHOES MASS ON RUNNING GAIT ANALYSIS

    Get PDF
    The purpose of this study was to investigate the running gait analysis between different mass of shoes. Eleven male college runners from the physical education department participated in this study. The mass of experimental shoes of this study were 175 g, 255 g, 335 g and 41 5 g. When the weight of shoes increased, the maximum vertical ground reaction force increased. and the footstrike patterns changed to mid-foot strike (MFS). The center of pressure shifted forward, and the runner changed to MFS. The strike index of the strike patterns change to MFS pattern that is self-protection mechanism. Heavy shoes increase ground reaction force, thus might increasing lower extremity injuries risk

    Beating the Clauser-Horne-Shimony-Holt and the Svetlichny games with Optimal States

    Full text link
    We study the relation between the maximal violation of Svetlichny's inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points 2/3{2}/{3} and 9/14{9}/{14} for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental preparation of maximally entangled states.Comment: 7 pages, 3 figures; minor changes; accepted in Physical Review
    • …
    corecore