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ABSTRACT

We use the standard Runge-Kutta method to solve a set of basic equations describing black hole accretion
flows composed of two-temperature plasma. We do not invoke any extra energy transport mechanism, such as
thermal conduction, and we do not specify any ad hoc outer boundary condition for the advection-dominated
accretion flow (ADAF) solution. We find that in the case of high viscosity and nonzero radiative cooling, the
ADAF solution can have an asymptotic approach to the Shakura-Sunyaev disk (SSD) solution and that the SSD-
ADAF transition radius is close to the central black hole. Our results further prove the mechanism of thermal
instability-triggered SSD-ADAF transition suggested previously by Takeuchi & Mineshige and Gu & Lu.

Subject headings: accretion, accretion disks — black hole physics — hydrodynamics

1. INTRODUCTION

The most famous model of accretion disks is the Shakura-
Sunyaev disk (SSD; Shakura & Sunyaev 1973). Since the SSD
was constructed exactly 30 years ago, the most important break-
through in the field of accretion disk theory has been the pro-
posal of an advection-dominated accretion flow (ADAF; Na-
rayan & Yi 1994; Abramowicz et al. 1995). The SSD and
ADAF appear to be adequate for describing the outer and inner
regions of black hole accretion flows, respectively, and a phe-
nomenological SSD�ADAF model has been quite successfully
applied to black hole X-ray binaries and galactic nuclei (see
Narayan, Mahadevan, & Quataert 1998 for a review). In this
model, however, a smooth transition from an outer SSD to an
inner ADAF was only assumed and not proved. From a physical
point of view, the question remains whether an SSD can con-
nect with (or be transformed into) an ADAF.

There have been basically three classes of answers to this ques-
tion. Dullemond & Turolla (1998) and Molteni, Gerardi, &Valenza
(2001) gave negative answers, arguing that a smooth transition
from an SSD to an ADAF was not possible. However, their con-
clusions were derived from specific conditions; Dullemond & Tur-
olla (1998) considered only the low-viscosity case (with the vis-
cosity parameter ), and Molteni et al. (2001) referred onlya ∼ 0.1
to the plain ADAF, i.e., that with zero cooling. The second class
of answers, on the other hand, was positive. A number of authors
showed that the SSD-ADAF transition was realizable if an extra
heat flux caused by thermal conduction was invoked in either the
radial direction (Honma 1996; Manmoto & Kato 2000; Gracia et
al. 2003) or in the vertical direction (Meyer & Meyer-Hofmeister
1994; Meyer, Liu, & Meyer-Hofmeister 2000). The cost of this
class of answers is, in our opinion, the involvement of an additional
mechanism of energy transport and, in particular, the introduction
of a new unknown parameter to measure thermal conductionaT

(Manmoto & Kato 2000). The third answer was proposed by
Takeuchi & Mineshige (1998) and Gu & Lu (2000), who suggested
that the thermal instability of a radiation pressure-supported SSD
could trigger the flow to jump from the SSD state to the ADAF
state. This answer is also a positive one but without involving any
extra mechanism of energy transport.

In this Letter, we present our answer to the question of SSD-
ADAF transition. We demonstrate that such a transition in a
smooth way is possible for flows with large values ofa (dif-
ferent from the case of Dullemond & Turolla 1998) and nonzero
radiative cooling (different from the case of Molteni et al.

2001). We do not involve any extra energy transport mechanism
such as conduction; this is different from the aforementioned
second class of answers and is similar to the third answer. We
discuss in some detail the relation between our results here and
those of Takeuchi & Mineshige (1998) and Gu & Lu (2000).

2. EQUATIONS

The dynamical equations for steady state axisymmetric ac-
cretion flows we consider here are usual in the literature (e.g.,
Narayan, Kato, & Honma 1997). That is, the continuity, radial
momentum, vertical equilibrium, and angular momentum equa-
tions read

Ṁ p �4pRHru, (1)

du 1 dp2 2u p Q R � Q R � , (2)KdR r dR

csH p , (3)
QK

2dQ uQ (QR � j)Kp , (4)2 2dR aR cs

where is the constant mass accretion rate,R is the radius,Ṁ
H is the half-thickness of the flow,r is the density of the
accreted gas, is the radial velocity,Q is the angular velocity,v

is the Keplerian angular velocity, and2Q Q p GM/(R �K K

in the well-known Paczyn´ski & Wiita (1980) potential,2R ) Rg

whereM is the mass of the central black hole, is the grav-Rg

itational radius,p is the pressure, is the isothermal soundcs

speed of the gas, defined as , andj is an integration2c p p/rs

constant that represents the specific angular momentum ac-
creted by the black hole.

As for the energy equation, we employ the form given by
Narayan & Yi (1995), which is for flows composed of two-
temperature plasma with bremsstrahlung and synchrotron ra-
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Fig. 1.—Global solution containing an SSD-ADAF transition. The solid line
and the dashed line represent the ADAF solution and the SSD solution, respec-
tively. (a) Radial velocity and the sound speed . (b) Angular momentumlu cs

and the Keplerian angular momentum . (c) Relative thickness . (d) Opticall H/RK

deptht. (e) Ion temperature and electron temperature . (f) Advection factorT Ti e

.Q /Qadv vis

Fig. 2.—Dependences of the SSD-ADAF transition radius and the thermalRtr

instability radius on the accretion rate .˙R mb

diation and Comptonization, i.e., a relatively complete and
complex case of black hole accretion flows:

Q p Q � Q , (5)vis adv Cou

Q p Q . (6)Cou rad

These two equations are for the energy balance of the ions and
of the electrons, respectively. Here and are the rateQ Qvis adv

of viscous heating that is primarily given to the ions, and the
rate of advective cooling by the ions and are expressed, for
example, by equations (5) and (6) of Gu & Lu (2000), re-
spectively. The quantity is the rate of energy transfer fromQCou

the ions to the electrons through Coulomb collisions and is
expressed by equation (3.3) of Narayan & Yi (1995); isQrad

the rate of radiative cooling of electrons and is calculated using
a bridging formula that is valid in both optically thick and
optically thin regimes,

4 �13t 8jTe4 �Q p 8jT � 3 � , (7)rad e ( )2 Q � Q � Q � Qbr sy br, C sy, C

where is the electron temperature,t is the total (electionTe

scattering plus absorption) optical depth,t p t � t pes abs

, and2 �1 4(0.34 cm g )rH � (Q � Q � Q � Q )/8jTbr sy br, C sy, C e

, , , and are the cooling rates of bremsstrahlungQ Q Q Qbr sy br, C sy, C

radiation, synchrotron radiation, Comptonization of brems-

strahlung radiation, and Comptonization of synchrotron radi-
ation and are explicitly expressed by equations (3.4), (3.18),
(3.23), and (3.24) of Narayan & Yi (1995), respectively.

Finally, the equation of state is needed to close the system of
equations,

p p p � p � p , (8)g r m

where is the gas pressure, is the ion tem-p p �r(T � T ) Tg i e i

perature, is the radiation pressure,�p p Q (t � 2/ 3)/4c p pr rad m

is the magnetic pressure,B is the magnetic field, and for2B /8p
simplicity it is usually assumed thatb { p /(p � p ) pm m g m

.const
Note that the dynamical equations (1)–(4) are valid for both

geometrically thin and thick flows (Narayan et al. 1997), and
equation (7) is a convenient interpolation between the optically
thin and thick limits. When the flow is extremely optically
thick, equation (7) gives , which is the ap-4Q p 16jT /3trad e

propriate blackbody limit, whereas in the optically thin limit
it gives . Thus, we expect thatQ p Q � Q � Q � Qrad br sy br, C sy, C

the above set of equations can be used to verify the possible
transition from an (optically thick, geometrically thin) SSD to
an (optically thin, geometrically thick) ADAF.

3. NUMERICAL SOLUTIONS

There are nine equations (eqs. [1]–[6], [8] plus the definition
, and the expression oft) for nine unknown variables2p p rcs

u, Q, , H, r, p, , , andt as functions ofR, with M, , a,˙c T T Ms i e

j, , and the adiabatic indexg being constant flow parameters.bm

We use the standard Runge-Kutta method to solve the set of
three differential equations (2), (4), and (5) for three unknowns
u, Q, and , and then obtain other variables from the remainingcs

algebraic equations. We integrate the three differential equa-
tions from the sonic point (where the radial velocity is equalRs

to the sound speed) both inward and outward. The derivatives
, , and at , which are needed to start thedu/dR dQ/dR dc /dR Rs s

integration, are evaluated by applying l’Hoˆpital’s rule. The
inward, supersonic part of the solution extends to the inner
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boundary of the flow, i.e., to a radius where the no-torqueR in

condition (i.e., ) is satisfied. More impor-2dQ/dR p 0 QR p j
tant for our purpose here is the outward, subsonic part of the
solution. It should be stressed that we do not specify any ad
hoc outer boundary conditions. We just observe how the out-
ward solution evolves with increasingR. On the other hand,
we obtain a standard SSD solution that is calculated from a
set of purely algebraic equations (e.g., Frank, King, & Raine
2002, p. 90). The given flow parametersM, , a, andj in theṀ
SSD solution are exactly the same as those in the above solution
obtained with the Runge-Kutta method. We watch if and where
the two solutions can smoothly match each other.

Figure 1 provides an example of a global solution of accretion
flow, i.e., the flow quantities as functions ofR. The solid line
represents the solution of the nine equations in § 2, with given
parameters , ( , with being˙ ˙ ˙˙ ˙a p 0.7 m p 0.01 m { M/M MEdd Edd

the Eddington accretion rate), , ,j p 0.742(cR ) g p 1.5 b pg m

, and ; the dashed line represents the SSD so-0.5 R p 2.95Rs g

lution with the same parametersa, , andj. Note that is notṁ Rs

another free parameter; it is the eigenvalue of the problem and
is self-consistently determined when the constant flow param-
eters are given. Figure 1a shows the radial velocity and theu
sound speed . Note that the solid line solution is transonic,cs

with the sonic point being marked by a filled square; while the
SSD solution is subsonic everywhere, it alone cannot describe
the transonic nature of black hole accretion. Figure 1b shows
the angular momentuml ( ). The SSD solution follows2p QR
the Keplerian distribution ( ), and the solid line so-2l p Q RK K

lution is sub-Keplerian. Figure 1c draws the flow’s relative thick-
ness , which is∼0.4 (geometrically thick) for smallR, de-H/R
creases asR increases, and reaches to∼0.005 (geometrically
thin) of the SSD solution. Figure 1d is for the optical deptht;
again with increasingR, the flow goes from being optically thin
( ) to being optically thick ( , the SSD solution). Fig-t K 1 t k 1
ure 1e is for the ion temperature and the electron temperatureTi

. The solid line solution has ; and asR increases, theT T k Te i e

two temperatures drop down and become identical (the SSD
solution). In Figure 1f one sees that the advection factor

is ∼1 (advection-dominated) forQ /Q p (Q � Q )/Qadv vis vis rad vis

small R, decreases dramatically with increasingR, and finally
reaches nearly zero (radiative cooling-dominated, the SSD so-
lution). From these figures we conclude that the solid line so-
lution is an ADAF solution, since it has properties of transonic
radial motion, sub-Keplerian rotation, and is geometrically thick,
optically thin, very hot, and of course, advection-dominated; we
find that this ADAF solution does match the (dashed line) SSD
solution, forming together a global solution. If the transition
radius is defined so that , then in the solutionR t p 1 R ≈ 12Rtr tr g

of Figure 1.

4. DISCUSSION

We have shown that a smooth SSD-ADAF transition is real-
izable for black hole accretion flows with high viscosity (a p

in Fig. 1) and nonzero radiative cooling. Our argument is0.7
simple. The equations we solve and the numerical method we use
are typical. We do not introduce any extra energy transport mech-
anism such as thermal conduction. Perhaps the only tool somewhat
special here is the bridging formula (7) expressing the radiative
cooling , which we need to join the optically thick regime toQrad

the optically thin regime of the flow.
Our Figure 1 looks very similar to Figure 1 of Manmoto &

Kato (2000), a representative paper of the second class of an-
swers to the question of SSD-ADAF transition mentioned in

§ 1. However, the similar results are obtained in different ways:

1. As mentioned already, Manmoto & Kato (2000) invoked
radial thermal conduction and, in particular, introduced a new
unknown parameter to measure this extra heat transportaT

mechanism, while we do not.
2. They used the relaxation method to solve the differential

equations, and we adopt the Runge-Kutta method. In principle,
the solution obtained should not be related to the numerical
method, but different methods suit solving different problems.
In order to have a solution for the subsonic flow between the
sonic point and the outer boundary, the relaxation method re-
quires both the sonic point condition and the outer boundary
condition, and the authors using this method imposed the SSD
properties (Keplerian rotating, radiation-dominated, etc.) as the
outer boundary condition of ADAF; i.e., the outer boundary
of ADAF had been a priori fixed to be in a state corresponding
to an SSD. The Runge-Kutta method, on the other hand, re-
quires only one boundary condition and is adequate for the
problem we address here. We do not know a priori what the
outer boundary condition of ADAF ought to be, so we do not
specify any. But we know for sure that black hole accretion
must be transonic, so we use the Runge-Kutta method to in-
tegrate the equations starting from the sonic point and observe
how the solution behaves asR increases. For wrong choices
of the sonic point condition and the given constant flow pa-
rameters, the outward ADAF solution does not match an SSD
solution. Then we try again until a correct choice is made, and
the ADAF solution has an asymptotic approach to an SSD
solution that corresponds to the same flow parameters as those
for the ADAF solution. Thus, we believe that a global solution
containing an SSD-ADAF transition is found. The cost of using
the Runge-Kutta method is that not only the variables at the
sonic point, but also their derivatives there, must be supplied
in order to start the integration; the calculations applying the
l’Hôpital rule are troublesome, albeit still straightforward.

3. In Manmoto & Kato (2000) the transition radius wasR tr

an inputted free parameter, while in our work it is determined
by the constant flow parameters and is naturally calculated.

Let us now comment on the relation between our results here
and the third answer to the question of SSD-ADAF transition
mentioned in § 1. Takeuchi & Mineshige (1998) suggested first
that for large the thermal instability of radiation pressure-a ∼ 1
supported SSD could trigger the SSD-ADAF transition. They
made time evolutionary calculations and obtained very interesting
results. Because of the dominance of radiation pressure, the SSD
becomes unstable at a small radius (∼3.5 in their example so-Rg

lution; see their Figs. 2 and 3), and the outer stable parts of the
flow become disturbed and evolve toward the ADAF state. This
outward propagating disturbance damps and stops at a large radius
(∼160 ); then a transition backward to the SSD state starts fromRg

that radius and propagates inward until∼5 (it is larger than theRg

original instability radius∼3.5 ). Finally, a two-phased flowRg

structure really becomes persistent; i.e., the flow stays in the ADAF
state inside the transition radius , and in the SSD stateR ∼ 5Rtr g

outside it. Later, Gu & Lu (2000) made a somewhat more extensive
study on the mechanism of thermal instability-triggered SSD-
ADAF transition, giving an parameter diagram in which the˙a-m
region allowing the SSD-ADAF transition is clearly seen. Both
Gu & Lu (2000) and the present Letter are for stationary flows,
so if the work of Gu & Lu (2000) corresponds to the first step of
time evolutionary calculations of Takeuchi & Mineshige (1998;
i.e., it proves the cause of SSD-ADAF transition and shows how
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to determine the original instability radius where the transition
starts to occur), then our work here corresponds to the final stage
of Takeuchi & Mineshige’s evolutionary sequence (i.e., it dem-
onstrates that a stable two-phased flow can form and exist).

In order to see more clearly the relation between the original
instability radius (where the SSD solution starts to break offRb

as a result of the thermal instability) and the transition radius
(where the SSD solution matches the ADAF solution in theR tr

final two-phased structure), we show in Figure 2 how these two
radii vary with . In this figure the solid line that representsṁ R tr

is obtained by numerically solving the set of equations listed in
§ 2, with , , , and (theng p 1.5 b p 0.5 a p 0.7 j p 0.742(cR )m g

for each value of a correctly chosen value of is required inṁ Rs

order to obtain a solution that contains an SSD-ADAF transition);
the dashed line that represents is drawn by applying the insta-Rb

bility condition in the standard SSD the-b { p /(p � p ) p 0.4g g r

ory, which gives (e.g., Kato, Fukue, & Mineshige16/21˙R ∝ mb

1998, p. 87 and p. 155). The solution of Figure 1 corresponding

to is marked by filled squares, which hasṁ p 0.01 R ≈ 12Rtr g

and . Note that is insensitive to and is always˙R ≈ 4.5R R mb g tr

larger than ; the larger that is, the closer the two radii are. It˙R mb

is also clear from Figure 2 that is close to the central blackR tr

hole; this is because, according to Takeuchi & Mineshige (1998)
and Gu & Lu (2000), the SSD-ADAF transition is caused by the
thermal instability in the radiation pressure-supported region, i.e.,
in the very inner part of SSD. These results about are distinctiveR tr

from those in other transition mechanisms. For example, in the
SSD-ADAF transition model involving radial thermal conduction,

appears as an inputted free parameter and has a very wideR tr

range, i.e., from a few to∼ (Manmoto & Kato 2000). It is410 Rg

worth studying further whether the SSD-ADAF transition radius
ought to be close to the central black hole or could be farther
away from the hole.
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