230 research outputs found

    Time-lapse ultrashort pulse microscopy of infection in three-dimensional versus two-dimensional culture environments reveals enhanced extra-chromosomal virus replication compartment formation

    Get PDF
    The mechanisms that enable viruses to harness cellular machinery for their own survival are primarily studied in cell lines cultured in two-dimensional (2-D) environments. However, there are increasing reports of biological differences between cells cultured in 2-D versus three-dimensional (3-D) environments. Here we report differences in host-virus interactions based on differences in culture environment. Using ultrashort pulse microscopy (UPM), a form of two-photon microscopy that utilizes sub-10-fs pulses to efficiently excite fluorophores, we have shown that de novo development of extra-chromosomal virus replication compartments (VRCs) upon murine cytomegalovirus (mCMV) infection is markedly enhanced when host cells are cultured in 3-D collagen gels versus 2-D monolayers. In addition, time-lapse imaging revealed that mCMV-induced VRCs have the capacity to grow by coalescence. This work supports the future potential of 3-D culture as a useful bridge between traditional monolayer cultures and animal models to study host-virus interactions in a more physiologically relevant environment for the development of effective anti-viral therapeutics. These advances will require broader adoption of modalities, such as UPM, to image deep within scattering tissues

    Nonlinear optical microscopy of articular cartilage.

    No full text

    Reversible Dissociation of Collagen in Tissues

    No full text
    corecore