90 research outputs found
Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens
Neuroblastoma (NB) is the most deadly extra-cranial solid tumour in children necessitating an urgent need for effective and less toxic treatments. One reason for the lack of efficacious treatments may be the inability of existing drugs to target the tumour-initiating or cancer stem cell population responsible for sustaining tumour growth, metastases and relapse. Here, we describe a strategy to identify compounds that selectively target patient-derived cancer stem cell-like tumour-initiating cells (TICs) while sparing normal paediatric stem cells (skin-derived precursors, SKPs) and characterize two therapeutic candidates. DECA-14 and rapamycin were identified as NB TIC-selective agents. Both compounds induced TIC death at nanomolar concentrations in vitro, significantly reduced NB xenograft tumour weight in vivo, and dramatically decreased self-renewal or tumour-initiation capacity in treated tumours. These results demonstrate that differential drug sensitivities between TICs and normal paediatric stem cells can be exploited to identify novel, patient-specific and potentially less toxic therapies
Perspective on dietary isothiocyanates in the prevention, development and treatment of cancer
Epidemiological evidence has highlighted the association of specific diets and a lower incidence of cancer. Foremost, the Mediterranean diet provides high levels of polyphenolics and a high consumption of healthier fats, e.g., as from olive oil. In the Mediterranean region the consumption of vegetables is elevated providing a class of compounds, the isothiocyanates (ITCs) as found in the cabbage family. The ITCs have raised great interest for their health benefits over the past few decades. Some of the key ITC compounds, sulforaphane, phenethylisothiocyanate and benzyl isothiocyanate, have been studied in vitro and in vivo and the data support their promise for cancer chemoprevention, as anti-tumor agents, and for chemoprotection of normal tissues and organs. Along with other polyphenolic compounds in the diet, in general, they also possess key anti-inflammatory properties thus satisfying the criteria for compounds that could intervene in cancer initiation and progression. In this review we provide a larger overview of the advantages of including ITCs in the diet as food or as supplements and speculate on what could constitute a valuable therapeutic strategy for improving and sustaining good health and countering cancer disease in humans
Immunohistochemical characterization of the chemosensory pulmonary neuroepithelial bodies in the naked mole-rat reveals a unique adaptive phenotype.
The pulmonary neuroepithelial bodies (NEBs) constitute polymodal airway chemosensors for monitoring and signaling ambient gas concentrations (pO2, pCO2/H+) via complex innervation to the brain stem controlling breathing. NEBs produce the bioactive amine, serotonin (5-HT), and a variety of peptides with multiple effects on lung physiology and other organ systems. NEBs in mammals appear prominent and numerous during fetal and neonatal periods, and decline in the post-natal period suggesting an important role during perinatal adaptation. The naked mole-rat (NMR), Heterocephalus glaber, has adapted to the extreme environmental conditions of living in subterranean burrows in large colonies (up to 300 colony mates). The crowded, unventilated burrows are environments of severe hypoxia and hypercapnia. However, NMRs adjust readily to above ground conditions. The chemosensory NEBs of this species were characterized and compared to those of the conventional Wistar rat (WR) to identify similarities and differences that could explain the NMR's adaptability to environments. A multilabel immunohistochemical analysis combined with confocal microscopy revealed that the expression patterns of amine, peptide, neuroendocrine, innervation markers and chemosensor component proteins in NEBs of NMR were similar to that of WR. However, we found the following differences: 1) NEBs in both neonatal and adult NMR lungs were significantly larger and more numerous as compared to WR; 2) NEBs in NMR had a more variable compact cell organization and exhibited significant differences in the expression of adhesion proteins; 3) NMR NEBs showed a significantly greater ratio of 5-HT positive cells with an abundance of 5-HT; 4) NEBs in NMR expressed the proliferating cell nuclear antigen (PCNA) and the neurogenic gene (MASH1) indicating active proliferation and a state of persistent differentiation. Taken together our findings suggest that NEBs in lungs of NMR are in a hyperactive, functional and developmental state, reminiscent of a persistent fetal state that extends postnatally
Potential cellular conformations of the CCN3(NOV) protein
Abstract Aim To study the cellular distribution of CCN3(NOV) and to determine if the carboxyterminus of CCN3 is hidden or masked due to high affinity interactions with other partners. CCN3 was detected using affinity purified antibodies (anti-K19M-AF) as well as a Protein A purified anti-K19M antibodies (anti-K19M IgG) against a C-terminal 19-aminoacid peptide (K19M) of human CCN3 protein. The antibodies were applied in indirect immunofluorescence tests and immunoenzyme assays on glial tumor cell line, G59, and its CCN3-transfected variant G59/540 and the adrenocortical cell line, NCI-H295R. Results Anti-K19M-AF antibodies reacted against K19M peptide in ELISA and recognized two bands of 51 kDa and 30 kDa in H295R (adrenocortical carcinoma) cell culture supernatants by immunoblotting. H295R culture supernatants which contained CCN3 as shown by immunoblotting did not react with anti-CCN3 antibodies in liquid phase. Anti-CCN3 antibodies stained the surface membranes of non-permeabilized H295R and cytoplasm in permeabilized H295R cells. Similarly, anti-CCN3 stained surface membranes of G59/540, but did not react with G59 cells. Prominent cytoplasmic staining was observed in G59/540, as well as the cell footprints of G59/540 and H295R were strongly labeled. Conclusions The K19M-AF antibody directed against the C-terminal 19-aminoacid peptide of CCN3 recognized the secreted protein under denaturing conditions. However, the C-terminal motif of secreted CCN3 was not accessible to K19M-AF in liquid phase. These anti-CCN3 antibodies stained CCN3 protein which was localized to cytoplasmic stores, cell membranes and extracellular matrix. This would suggest that cytoplasmic and cell membrane bound CCN3 has an exposed C-terminus while secreted CCN3 has a sequestered C-terminus which could be due to interaction with other proteins or itself (dimerization). Thus the K19M-AF antibodies revealed at least two conformational states of the native CCN3 protein.</p
- ā¦