3,142 research outputs found
Finding Galaxy Groups In Photometric Redshift Space: the Probability Friends-of-Friends (pFoF) Algorithm
We present a structure finding algorithm designed to identify galaxy groups
in photometric redshift data sets: the probability friends-of-friends (pFoF)
algorithm. This algorithm is derived by combining the friends-of-friends
algorithm in the transverse direction and the photometric redshift probability
densities in the radial dimension. The innovative characteristic of our
group-finding algorithm is the improvement of redshift estimation via the
constraints given by the transversely connected galaxies in a group, based on
the assumption that all galaxies in a group have the same redshift. Tests using
the Virgo Consortium Millennium Simulation mock catalogs allow us to show that
the recovery rate of the pFoF algorithm is larger than 80% for mock groups of
at least 2\times10^{13}M_{\sun}, while the false detection rate is about 10%
for pFoF groups containing at least net members. Applying the algorithm
to the CNOC2 group catalogs gives results which are consistent with the mock
catalog tests. From all these results, we conclude that our group-finding
algorithm offers an effective yet simple way to identify galaxy groups in
photometric redshift catalogs.Comment: AJ accepte
Galaxy Clusters in the Line of Sight to Background Quasars: I. Survey Design and Incidence of MgII Absorbers at Cluster Redshifts
We describe the first optical survey of absorption systems associated with
galaxy clusters at z= 0.3-0.9. We have cross-correlated SDSS DR3 quasars with
high-redshift cluster/group candidates from the Red-Sequence Cluster Survey. We
have found 442 quasar-cluster pairs for which the MgII doublet might be
detected at a transverse (physical) distance d<2 Mpc from the cluster centers.
To investigate the incidence (dN/dz) and equivalent-width distribution n(W) of
MgII systems at cluster redshifts, two statistical samples were drawn out of
these pairs: one made of high-resolution spectroscopic quasar observations (46
pairs), and one made of quasars used in MgII searches found in the literature
(375 pairs). The results are: (1) the population of strong MgII systems
(W_0>2.0 Ang.) near cluster redshifts shows a significant (>3 sigma)
overabundance (up to a factor of 15) when compared with the 'field' population;
(2) the overabundance is more evident at smaller distances (d<1 Mpc) than
larger distances (d<2 Mpc) from the cluster center; and, (3) the population of
weak MgII systems (W_0<0.3 Ang.) near cluster redshifts conform to the field
statistics. Unlike in the field, this dichotomy makes n(W) in clusters appear
flat and well fitted by a power-law in the entire W-range. A sub-sample of the
most massive clusters yields a stronger and still significant signal. Since
either the absorber number density or filling-factor/cross-section affects the
absorber statistics, an interesting possibility is that we have detected the
signature of truncated halos due to environmental effects. Thus, we argue that
the excess of strong systems is due to a population of absorbers in an
overdense galaxy environment, and the lack of weak systems to a different
population, that got destroyed in the cluster environment. (Abridged)Comment: Accepted for publication in the Astrophysical Journa
Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes
Using pre-designed trains of femtosecond optical pulses, we have selectively
excited coherent phonons of the radial breathing mode of specific-chirality
single-walled carbon nanotubes within an ensemble sample. By analyzing the
initial phase of the phonon oscillations, we prove that the tube diameter
initially increases in response to ultrafast photoexcitation. Furthermore, from
excitation profiles, we demonstrate that an excitonic absorption peak of carbon
nanotubes periodically oscillates as a function of time when the tube diameter
undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure
Remarks on Renormalization of Black Hole Entropy
We elaborate the renormalization process of entropy of a nonextremal and an
extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars
regularization method, in which the regulator fields obey either the
Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics.
The black hole entropy involves only two renormalization constants. We also
discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure
The Red-Sequence Luminosity Function in Galaxy Clusters since z~1
We use a statistical sample of ~500 rich clusters taken from 72 square
degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of
~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95.
We construct red-sequence luminosity functions (RSLFs) for a well-defined,
homogeneously selected, richness limited sample. The RSLF at higher redshifts
shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers
increasing towards the present epoch. This is consistent with the `down-sizing`
picture in which star-formation ended at earlier times for the most massive
(luminous) galaxies and more recently for less massive (fainter) galaxies. We
observe a richness dependence to the down-sizing effect in the sense that, at a
given redshift, the drop-off of faint red galaxies is greater for poorer (less
massive) clusters, suggesting that star-formation ended earlier for galaxies in
more massive clusters. The decrease in faint red-sequence galaxies is
accompanied by an increase in faint blue galaxies, implying that the process
responsible for this evolution of faint galaxies is the termination of
star-formation, possibly with little or no need for merging. At the bright end,
we also see an increase in the number of blue galaxies with increasing
redshift, suggesting that termination of star-formation in higher mass galaxies
may also be an important formation mechanism for higher mass ellipticals. By
comparing with a low-redshift Abell Cluster sample, we find that the
down-sizing trend seen within RCS-1 has continued to the local universe.Comment: ApJ accepted. 11 pages, 5 figure
Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions
We study the ultraviolet divergent structures of the matter (scalar) field in
a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter
field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars
regularization method. We find that the matter field contribution to the black
hole entropy does not, in general, yield the correct renormalization of the
gravitational coupling constants. In particular we show that the matter field
contribution in odd dimensions does not give the term proportional to the area
of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX,
No Figure
âItâs like my life but more, and better!â - Playing with the Cathaby Shark Girls: MMORPGs, young people and fantasy-based social play
This article is available open access through the publisherâs website at the link below. Copyright @ 2011 A B Academic Publishers.Digital technology has opened up a range of new on-line leisure spaces for young people. Despite their popularity, on-line games and Massive Multiplayer Online Role Playing Games in particular are still a comparatively under-researched area in the fields of both Education and more broadly Youth Studies. Drawing on a Five year ethnographic study, this paper considers the ways that young people use the virtual spaces offered by MMORPGs. This paper suggests that MMORPGs represent significant arenas within which young people act out a range of social narratives through gaming. It argues that MMORPG have become important fantasy spaces which offer young people possibilities to engage in what were formally material practices. Although this form of play is grounded in the everyday it also extends material practices and offers new and unique forms of symbolic experimentation, thus I argue that game-play narratives cannot be divorced from the everyday lives of their participants
Role of Secondary Motifs in Fast Folding Polymers: A Dynamical Variational Principle
A fascinating and open question challenging biochemistry, physics and even
geometry is the presence of highly regular motifs such as alpha-helices in the
folded state of biopolymers and proteins. Stimulating explanations ranging from
chemical propensity to simple geometrical reasoning have been invoked to
rationalize the existence of such secondary structures. We formulate a
dynamical variational principle for selection in conformation space based on
the requirement that the backbone of the native state of biologically viable
polymers be rapidly accessible from the denatured state. The variational
principle is shown to result in the emergence of helical order in compact
structures.Comment: 4 pages, RevTex, 4 eps figure
Abelian Dominance of Chiral Symmetry Breaking in Lattice QCD
Calculations of the chiral condensate on the lattice using staggered fermions
and the Lanczos algorithm are presented. Four gauge fields are considered: the
quenched non-Abelian field, an Abelian projected field, and monopole and photon
fields further decomposed from the Abelian field. Abelian projection is
performed in maximal Abelian gauge and in Polyakov gauge. The results show that
monopoles in maximal Abelian gauge largely reproduce the chiral condensate
values of the full non-Abelian theory, in both SU(2) and SU(3) color.Comment: 13 pages in RevTex including 6 figures, uucompressed, self-extractin
- âŠ