61 research outputs found

    Response of Dynamic Change of Vegetation Index to Precipitation Fluctuations in Hulunbeier Typical Steppe

    Get PDF
    In arid and semi-arid regions, precipitation is an important environmental limiting factor for ecosystems, where precipitation characteristic parameters at different time scales have great variability (Mohammad and Howard, 2006), and the small precipitation events (\u3c 5 mm) is the subject of precipitation events (Loik et al., 2004, Sala and Lauenroth, 1982). In this study, we used vegetation index extracted from TM or MODIS image to establish the regression models between vegetation index and precipitation, and then analyzed the response of typical steppe vegetation to precipitation fluctuations. Our result can supply reference for the productivity measurement model in typical steppe

    Contributions of Different Regulatory Mechanisms to Osmotic Potential Changes in Three \u3cem\u3eCaragana\u3c/em\u3e Species on the Mongolian Plateau

    Get PDF
    The genus Caragana of legume family is endemic to the temperate grasslands of Eurasia (Cao et al., 1999). Caragana species are broadly distributed in the temperate Asia zone (E30°–140°, N28°–56°). Caragana microphylla, Caragana davazamcii, and Caragana korshinskii are typical representatives of the genus Caragana in central Asia. The three Caragana species exhibit a geographically substituted distribution from east (semi arid habitat) to west (arid habitat) on the Mongolian Plateau. Existing studies investigating the reasons for the interspecific geographical transition of the three Caragana species have primarily focused on RAPD analysis, photosynthetic capacity, and hydraulic architecture. In contrast, information on the adjustment mechanisms in Ψπ changes remains limited; particularly regarding the relative contributions of the main three regulatory mechanisms knows little

    AMD-DBSCAN: An Adaptive Multi-density DBSCAN for datasets of extremely variable density

    Full text link
    DBSCAN has been widely used in density-based clustering algorithms. However, with the increasing demand for Multi-density clustering, previous traditional DSBCAN can not have good clustering results on Multi-density datasets. In order to address this problem, an adaptive Multi-density DBSCAN algorithm (AMD-DBSCAN) is proposed in this paper. An improved parameter adaptation method is proposed in AMD-DBSCAN to search for multiple parameter pairs (i.e., Eps and MinPts), which are the key parameters to determine the clustering results and performance, therefore allowing the model to be applied to Multi-density datasets. Moreover, only one hyperparameter is required for AMD-DBSCAN to avoid the complicated repetitive initialization operations. Furthermore, the variance of the number of neighbors (VNN) is proposed to measure the difference in density between each cluster. The experimental results show that our AMD-DBSCAN reduces execution time by an average of 75% due to lower algorithm complexity compared with the traditional adaptive algorithm. In addition, AMD-DBSCAN improves accuracy by 24.7% on average over the state-of-the-art design on Multi-density datasets of extremely variable density, while having no performance loss in Single-density scenarios. Our code and datasets are available at https://github.com/AlexandreWANG915/AMD-DBSCAN.Comment: Accepted at DSAA202

    Multimodal ultrasound imaging: a method to improve the accuracy of sentinel lymph node diagnosis in breast cancer

    Get PDF
    AimThis study assessed the utility of multimodal ultrasound in enhancing the accuracy of breast cancer sentinel lymph node (SLN) assessment and compared it with single-modality ultrasound.MethodsPreoperative examinations, including two-dimensional ultrasound (2D US), intradermal contrast-enhanced ultrasound (CEUS), intravenous CEUS, shear-wave elastography (SWE), and surface localization, were conducted on 86 SLNs from breast cancer patients. The diagnostic performance of single and multimodal approaches for detecting metastatic SLNs was compared to postoperative pathological results.ResultsAmong the 86 SLNs, 29 were pathologically diagnosed as metastatic, and 57 as non-metastatic. Single-modality ultrasounds had AUC values of 0.826 (intradermal CEUS), 0.705 (intravenous CEUS), 0.678 (2D US), and 0.677 (SWE), respectively. Intradermal CEUS significantly outperformed the other methods (p<0.05), while the remaining three methods had no statistically significant differences (p>0.05). Multimodal ultrasound, combining intradermal CEUS, intravenous CEUS, 2D US, and SWE, achieved an AUC of 0.893, with 86.21% sensitivity and 84.21% specificity. The DeLong test confirmed that multimodal ultrasound was significantly better than the four single-modal ultrasound methods (p<0.05). Decision curve analysis and clinical impact curves demonstrated the superior performance of multimodal ultrasound in identifying high-risk SLN patients.ConclusionMultimodal ultrasound improves breast cancer SLN identification and diagnostic accuracy

    Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria

    Get PDF
    IntroductionNitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N.MethodsBioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2.ResultsWe identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins with NO3− were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs- NO3− binding energy ranged from -3.8 to -2.7 kcal/mol.DiscussionTaken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency

    Can fecal calprotectin accurately identify histological activity of ulcerative colitis? A meta-analysis

    Get PDF
    Background and Aims: Elevated fecal calprotectin (FC) levels have been reported to correlate with histological activity in patients with ulcerative colitis (UC). However, the accuracy of FC for evaluating histological activity of UC remains to be determined. The aim of this study was to determine the accuracy of FC for evaluating histological activity of UC, based on updated definitions. Methods: Related studies were retrieved from the PubMed, Web of Science, Embase, and Cochrane databases. Adult participants diagnosed with UC were included when sufficient data could be extracted to calculate the accuracy of FC for evaluating histological activity. The primary outcome was histological response, and the secondary outcome was histological remission, defined according to a recently updated position paper of European Crohn’s and Colitis Organization. Statistics were pooled using bivariate mixed-effects models. The area under the curve was estimated by summary receiver-operating characteristic curves. Results: Nine studies were included, from which 1039 patients were included for the analysis of histological response and 591 patients for histological remission. For the evaluation of histological response, the pooled sensitivity, specificity, and the area under the curve were 0.69 [95% confidence interval (CI): 0.52–0.82], 0.77 (95% CI: 0.63–0.87), and 0.80 (95% CI: 0.76–0.83), respectively. For the evaluation of histological remission, the corresponding estimates were 0.76 (95% CI: 0.71–0.81), 0.71 (95% CI: 0.62–0.78), and 0.79 (95% CI: 0.75–0.82), respectively. FC had a higher accuracy in studies using Nancy Index. For histological response, the cut-off values of FC ranged from 50 to 172 µg/g, and the sensitivity was higher in studies with FC cut-off values >100 µg/g (0.77 versus 0.65). Conclusion: FC is a valuable biomarker for assessing histological activity in patients with UC. A cut-off value of 100–200 µg/g is more appropriate to spare patients from an unnecessary endoscopy and biopsy

    Scientific Opportunities with an X-ray Free-Electron Laser Oscillator

    Full text link
    An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray source that would produce fully coherent pulses with meV bandwidth and stable intensity. The XFELO complements existing sources based on self-amplified spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL) that produce ultra-short pulses with broad-band chaotic spectra. This report is based on discussions of scientific opportunities enabled by an XFELO during a workshop held at SLAC on June 29 - July 1, 2016Comment: 21 pages, 12 figure

    The Transcription Factor TCF1 Preserves the Effector Function of Exhausted CD8 T Cells During Chronic Viral Infection

    Get PDF
    The long-term persistence of viral antigens drives virus-specific CD8 T cell exhaustion during chronic viral infection. Yet exhausted, CD8 T cells are still endowed with certain levels of effector function, by which they can keep viral replication in check in chronic infection. However, the regulatory factors involved in regulating the effector function of exhausted CD8 T cell are largely unknown. Using mouse model of chronic LCMV infection, we found that the deletion of transcription factor TCF-1 in LCMV-specific exhausted CD8 T cells led to the profound reduction in cytokine production and degranulation. Conversely, ectopic expression of TCF-1 or using agonist to activate TCF-1 activities promotes the effector function of exhausted CD8 T cells. Mechanistically, TCF-1 fuels the functionalities of exhausted CD8 T cells by promoting the expression of an array of key effector function-associated transcription regulators, including Foxo1, Zeb2, Id3, and Eomes. These results collectively indicate that targeting TCF-1 mediated transcriptional pathway may represent a promising immunotherapy strategy against chronic viral infections by reinvigorating the effector function of exhausted virus-specific CD8 T cells

    Generation of Schrödinger Cat States in a Hybrid Cavity Optomechanical System

    No full text
    We present an alternative scheme to achieve Schrödinger cat states in a strong coupling hybrid cavity optomechanical system. Under the single-photon strong-coupling regime, the interaction between the atom–cavity–oscillator system can induce the mesoscopic mechanical oscillator to Schrödinger cat states. Comparing to previous schemes, the proposed proposal consider the second order approximation on the Lamb–Dicke parameter, which is more universal in the experiment. Numerical simulations confirm the validity of our derivation

    Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle

    No full text
    The aim of the study was to monitor the effects of exogenous melatonin on cucumber (Cucumis sativus L.) chloroplasts and explore the mechanisms through which it mitigates chilling stress. Under chilling stress, chloroplast structure was seriously damaged as a result of over-accumulation of reactive oxygen species (ROS), as evidenced by the high levels of superoxide anion (O2-) and hydrogen peroxide (H2O2). However, pretreatment with 200 μM melatonin effectively mitigated this by suppressing the levels of ROS in chloroplasts. On the one hand, melatonin enhanced the scavenging ability of ROS by stimulating the ascorbate–glutathione (AsA-GSH) cycle in chloroplasts. The application of melatonin led to high levels of AsA and GSH, and increased the activity of total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) dehydroascorbate reductase (DHAR, EC 1.5.5.1), glutathione reductase (GR, EC1.6.4.2) in the AsA-GSH cycle. On the other hand, melatonin lessened the production of ROS in chloroplasts by balancing the distribution of photosynthetic electron flux. Melatonin helped maintain a high level of electron flux in the PCR cycle [Je(PCR)] and in the PCO cycle [Je(PCO)], and suppressed the O2-dependent alternative electron flux Ja(O2-dependent) which is one important ROS source. Results indicate that melatonin increased the chilling tolerance of chloroplast in cucumber seedlings by accelerating the AsA-GSH cycle to enhance ROS scavenging ability and by balancing the distribution of photosynthetic electron flux so as to suppress ROS production
    • …
    corecore