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Introduction 
The genus Caragana of legume family is endemic to the temperate grasslands of Eurasia (Cao et al., 1999). Caragana 

species are broadly distributed in the temperate Asia zone (E30°–140°, N28°–56°). Caragana microphylla, Caragana 

davazamcii, and Caragana korshinskii are typical representatives of the genus Caragana in central Asia. The three 

Caragana species exhibit a geographically substituted distribution from east (semi arid habitat) to west (arid habitat) on 

the Mongolian Plateau. Existing studies investigating the reasons for the interspecific geographical transition of the three 

Caragana species have primarily focused on RAPD analysis, photosynthetic capacity, and hydraulic architecture. In 

contrast, information on the adjustment mechanisms in Ψπ changes
 
remains limited; particularly regarding the relative 

contributions of the main three regulatory mechanisms knows little. 

 

Materials and Methods 
Based on the geographically distribution pattern of Caragana species on the Inner Mongolian Plateau (Li et al., 2007), 

three sites were selected as study areas (Table 1). The most easterly site was located at the Inner Mongolia Grassland 

Ecosystem Research Station (IMFERS). The central site was located at Huangfuchuan Station. The most westerly site was 

located at the Ordos Sandland Ecological Station (OSES). Habitat aridity increased along water gradient. The dominant 

Caragana species at each site was investigated, i.e., C. microphylla, C. davazamcii, and C. korshinskii at IMFERS, IMHS, 

and OSES, respectively.  

  

Table 1: Characteristics of the three study sites 

Study 

site 

Longitude 

(°E) 

Latitude 

(°N) 

Altitude 

(m) 

Annual 

precipitation 

(mm) 

Annual 

average 

temperature 

(°C) 

Climate type Soil type 

MFERS 11642 4338 1187 350 2 
Temperate semi-arid 

continental steppe climate 
Chestnut soil 

IMHS 11107 3945 1100 369 6.2 Typical semi-arid climate Chestnut soil 

OSES 10951 3902 1300 330 7 Semiarid steppe region 
Sandy– 

chestnut soil 

   

On three sunny windless days in the mid-July in 2012, we randomly selected 15-year-old mature plants of C. microphylla, 

C. davazamcii, and C. korshinskii to measure Ψw and Ψπ at fully expanded sun leaves from 1-year-old healthy branches of 

the selected plants. Five plants of each Caragana species were randomly selected, with three leaves from two branches of 

each plant being measured. Diurnal changes in Ψw and Ψπ were measured using a Psypro Dew Point Microvoltmeter 

(Wescor Company, USA) once every 2 h from 06:00 to 20:00 each day. In addition, leaf relative water content (RWC), 

turgid weight (TW), and dry weight (DW) were determined using the same leaf tissue as that used for Ψπ measurement 

using the drying weighing method. Then, using the method described by Girma and Krieg (1992), we analyzed the 

relative contributions of different regulatory pathways. 

 

Results and Discussion 
All three Caragana species exhibited similar diurnal variation in Ψπ (Fig. 1). Specifically, Ψπ drastically declined before 

noon, reaching the lowest point at 14:00, and then began to rise with increasing atmospheric humidity as light intensity 

and temperature decreased. However, C. korshinskii exhibited the greatest decreasing amplitude. Plants with lower Ψπ 
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exhibit a stronger capacity to avoid dehydration and maintain turgor pressure. Therefore, C. korshinskii showed the 

strongest drought tolerance. 
  

  

 
   

Fig. 1. Showed that the total amount of diurnal variation in Ψπ (ΔΨπ) of C. microphylla, C. davazamcii, and C. korshinskii was -0.34 

MPa, -0.59 MPa, and -1.0 MPa, respectively. Dehydration and net solute accumulation represented the main regulatory mechanisms 

for Ψπ changes in all three Caragana species, whereas non-permeable osmotic volume change had a minimal effect (Table 2 and Fig. 

2). Although the relative contribution of cell size reduction was small, its importance increased with decreasing longitude (i.e., as 

aridity intensified) from C. microphylla to C. davazamcii and C. korshinskii.  

  

 
Fig. 2. Diurnal variations in ΔΨπ, -Ψπ
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 of C. microphylla, C. davazamcii, and C. korshinskii (each data point 

represents pooled data of 3-d measurements for every Caragana species) 
 

 

 

 



 

Table 2: Relative contributions of three pathways to diurnal Ψπ changes 

Pathways Relative contributions (%) 

  C. microphylla C. davazamcii C. korshinskii 

Dehydration 76 56 52 

Net solute accumulation 38 39 34 

Non-permeable volume change 4.5 10 14 

 

The elastic regulation capability of the plant cell is proportional to its drought resistance. A higher ε value indicates a 

more rigid and less elastic cell wall. The ε values of C. microphylla, C. davazamcii, and C. korshinskii were 24.5 MPa, 

19.2 MPa, and 14.9 MPa, respectively, and their interspecific differences were significant. Cell wall elasticity was 

ordered: C. korshinskii > C. davazamcii > C. microphylla, indicating that the regulation capacity of cell elasticity 

gradually increased as habitat aridity increased. Shi et al., (2003) thought that the plants’ ε increased once drought started. 

However, our results showed the ε values of the three Caragana species didn't change with decreasing Ψw, and their entire 

relation coefficient was lower than 0.1, indicating that the cell wall elasticity of all three Caragana species was relatively 

stable under natural conditions, and the amount of cell wall elasticity may be an inherent property.  

  

Conclusion 

The three Caragana species growing in arid or semi arid habitats displayed distinct water regulation mechanisms. Overall, 

dehydration and net solute accumulation were vital mechanisms involved in diurnal Ψπ adjustment in all three Caragana 

species. However, cell volume changes caused by the accumulation of non-soluble polymers increasingly contributed to 

Ψπ changes from C. mircophylla to C. davazamcii and C. korshinskii. In addition, higher cell elasticity in C. korshinskii 

also helped to maintain lower Ψw and Ψπ. Therefore, the capacity of drought resistance was ordered: C. mircophylla < C. 

davazamcii < C. korshinskii. Also, these results demonstrate that there is a stable cell water physiological basis for the 

geographically substituted distribution of the three Caragana species on the Mongolian Plateau. 
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