3 research outputs found
Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression
<p>The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes <i>Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4</i> and <i>Trem2</i> were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of <i>Atp6v0d2, Lpo, Mmp7, Mmp12</i> and <i>Rnase9</i> were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs.</p
Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans
<p>In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the <i>in vivo</i> and <i>in vitro</i> experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between <i>in vitro</i> and early-stage <i>in vivo</i> events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose–response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.</p
Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles
<p>In order to examine whether intratracheal instillation studies can be useful for determining the harmful effect of nanoparticles, we performed inhalation and intratracheal instillation studies using samples of the same nanoparticles. Nickel oxide nanoparticles (NiO) and titanium dioxide nanoparticles (TiO<sub>2</sub>) were used as chemicals with high and low toxicities, respectively. In the intratracheal instillation study, rats were exposed to 0.2 or 1 mg of NiO or TiO<sub>2</sub>. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the single intratracheal instillation. In the inhalation study, rats were exposed to inhaled NiO or TiO<sub>2</sub> (1.65, 1.84 mg/m<sup>3</sup>, respectively) for 4 weeks. The same endpoints were examined from 3 days to 3 months after the end of exposure. Inhalation of NiO induced an increase in the number of neutrophils in BALF and concentrations of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and heme oxygenase (HO)-1. Intratracheal instillation of NiO induced persistent inflammation and upregulation of these cytokines was observed in the rats. However, inhalation of TiO<sub>2</sub> did not induce pulmonary inflammation, and intratracheal instillation of TiO<sub>2</sub> transiently induced an increase in the number of neutrophils in BALF and the concentrations of CINC-1, CINC-2 and HO-1. Taken together, a difference in pulmonary inflammation was observed between the high and low toxicity nanomaterials in the intratracheal instillation studies, as in the inhalation studies, suggesting that intratracheal instillation studies may be useful for ranking the harmful effects of nanoparticles.</p