11 research outputs found

    3-[2-[4-(3-Chloro-2methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e) is neuroprotective in rat microsphere embolism: Role of the cross-talk between calpain and caspase-3 throug

    Get PDF
    ABSTRACT Microsphere embolism (ME)-induced cerebral ischemia can elicit various pathological events leading to neuronal death. Western blotting and immunohistochemical studies revealed that expression of calpastatin, an endogenous calpain inhibitor, decreased after ME induction. Calpain activation after ME was apparently due to, in part, a decrease in calpastatin in a late phase of neuronal injury. The time course of that decrease also paralleled caspase-3 activation. In vitro studies demonstrated that calpastatin was degraded by caspase-3 in a Ca 2ϩ /calmodulin (CaM)-dependent manner. Because CaM binds directly to calpastatin, we asked whether a novel CaM antagonist, 3-[2-[4-(3-chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e), inhibits caspase-3-induced calpastatin degradation during ME-induced neuronal damage. We also tested the effect of DY-9760e on degradation of fodrin, a calpain substrate. Consistent with our hypothesis, DY-9760e (25 or 50 mg/kg i.p.) treatment inhibited degradation of calpastatin and fodrin in a dose-dependent manner. Because DY-9760e showed powerful neuroprotective activity with concomitant inhibition of calpastatin degradation, cross-talk between calpain and caspase-3 through calpastatin possibly accounts for ME-induced neuronal injury. Taken together, both inhibition of caspase-3-induced calpastatin degradation and calpain-induced fodrin breakdown by DY-9760e in part mediate its neuroprotective action

    3-[2-[4-(3-Chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1 H

    No full text

    A study of the properties of chlorine dioxide gas as a fumigant

    No full text

    CaMKIIδB mediates aberrant NCX1 expression and the imbalance of NCX1/SERCA in transverse aortic constriction-induced failing heart.

    Get PDF
    Ca²⁺/calmodulin-dependent protein kinase II δB (CaMKIIδB) is one of the predominant isoforms of CaMKII in the heart. The precise role of CaMKIIδB in the transcriptional cross-talk of Ca²⁺-handling proteins during heart failure remains unclear. In this work, we aim to determine the mechanism of CaMKIIδB in modulating the expression of sarcolemmal Na⁺-Ca²⁺ exchange (NCX1). We also aim to address the potential effects of calmodulin antagonism on the imbalance of NCX1 and sarcoendoplasmic reticulum Ca²⁺ ATPase (SERCA) during heart failure. Eight weeks after transverse aortic constriction (TAC)-induced heart failure in mice, we found that the heart weight/tibia length (HW/TL) ratio and the lung weight/body weight (LW/BW) ratio increased by 59% and 133%, respectively. We further found that the left ventricle-shortening fraction decreased by 40% compared with the sham-operated controls. Immunoblotting revealed that the phosphorylation of CaMKIIδB significantly increased 8 weeks after TAC-induced heart failure. NCX1 protein levels were also elevated, whereas SERCA2 protein levels decreased in the same animal model. Moreover, transfection of active CaMKIIδB significantly increased NCX1 protein levels in adult mouse cardiomyocytes via class IIa histone deacetylase (HDAC)/myocyte enhancer factor-2 (MEF2)-dependent signaling. In addition, pharmacological inhibition of calmodulin/CaMKIIδB activity improved cardiac function in TAC mice, which partially normalized the imbalance between NCX1 and SERCA2. These data identify NCX1 as a cellular target for CaMKIIδB. We also suggest that the CaMKIIδB-induced imbalance between NCX1 and SERCA2 is partially responsible for the disturbance of intracellular Ca²⁺ homeostasis and the pathological process of heart failure

    Endothelial modulation of vascular relaxation to nitrovasodilators in aging and hypertension.

    No full text
    ABSTRACT Blood vessel responses to relaxant drugs have been reported to change with aging and with the development of hypertension
    corecore