122 research outputs found

    A Techniques for Scalable and Effective Routability Evaluation

    Get PDF
    Routing congestion has become a critical layout challenge in nanoscale circuits since it is a critical factor in determining the routability of a design. An unroutable design is not useful even though it closes on all other design metrics. Fast design closure can only be achieved by accurately evaluating whether a design is routable or not early in the design cycle. Lately, it has become common to use a “light mode ” version of a global router to quickly evaluate the routability of a given placement. This approach suffers from three weaknesses: (i) it does not adequately model local routing resources, which can cause incorrect routability predictions that are only detected late, during detailed routing, (ii) the congestion maps obtained by it tend to have isolated hot spots surrounded by noncongested spots, called “noisy hot spots”, which further affects the accuracy in routability evaluation, (iii) the metrics used to represent congestion may yield numbers that do not provide sufficient intuition to the designer; moreover, they may often fail to predict the routability accurately. This paper presents solutions to these issues. First, we propose three approaches to model local routing resources. Second, we propose a smoothing technique to reduce the number of noisy hot spots and obtain a more accurate routability evaluation result. Finally, we develop a new metric which represents congestion maps with higher fidelity. We apply the proposed techniques to several industrial circuits and demonstrate that one can better predict and evaluate design routability, and congestion mitigation tools can perform muc

    Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell

    Get PDF
    A mesoscopic nitrogen-doped TiO2 sphere has been developed for a quasi-solid-state dye-sensitized solar cell [DSSC]. Compared with the undoped TiO2 sphere, the quasi-solid-state DSSC based on the nitrogen-doped TiO2 sphere shows more excellent photovoltaic performance. The photoelectrochemistry of electrodes based on nitrogen-doped and undoped TiO2 spheres was characterized with Mott-Schottky analysis, intensity modulated photocurrent spectroscopy, and electrochemical impedance spectroscopy, which indicated that both the quasi-Fermi level and the charge transport of the photoelectrode were improved after being doped with nitrogen. As a result, a photoelectric conversion efficiency of 6.01% was obtained for the quasi-solid-state DSSC

    On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing

    Full text link
    We report on the fabrication of three-dimensional (3D) high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the 3D nature of femtosecond laser direct writing. The processing mainly consists of formation of freestanding microdisks by femtosecond laser direct writing and subsequent wet chemical etching. CO2 laser annealing is followed to smooth the microcavity surface. Microcavities with arbitrary tilting angle, lateral and vertical positioning are demonstrated, and the quality (Q)-factor of a typical microcavity is measured to be up to 1.07x10^6, which is currently limited by the low spatial resolution of motion stage used during the laser patterning and can be improved with motion stages of higher resolutions.Comment: 17 pages, 3 figure

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    • …
    corecore