33,615 research outputs found

    Magnetic Excitations of Stripes Near a Quantum Critical Point

    Get PDF
    We calculate the dynamical spin structure factor of spin waves for weakly coupled stripes. At low energy, the spin wave cone intensity is strongly peaked on the inner branches. As energy is increased, there is a saddlepoint followed by a square-shaped continuum rotated 45 degree from the low energy peaks. This is reminiscent of recent high energy neutron scattering data on the cuprates. The similarity at high energy between this semiclassical treatment and quantum fluctuations in spin ladders may be attributed to the proximity of a quantum critical point with a small critical exponent η\eta.Comment: 4+ pages, 5 figures, published versio

    Magnetic Excitations of Stripes and Checkerboards in the Cuprates

    Get PDF
    We discuss the magnetic excitations of well-ordered stripe and checkerboard phases, including the high energy magnetic excitations of recent interest and possible connections to the "resonance peak" in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of magnetically ordered configurations, including vertical and diagonal site- and bond-centered stripes and simple checkerboards. We calculate the expected neutron scattering intensities as a function of energy and momentum. At zero frequency, the satellite peaks of even square-wave stripes are suppressed by as much as a factor of 34 below the intensity of the main incommensurate peaks. We further find that at low energy, spin wave cones may not always be resolvable experimentally. Rather, the intensity as a function of position around the cone depends strongly on the coupling across the stripe domain walls. At intermediate energy, we find a saddlepoint at (π,π)(\pi,\pi) for a range of couplings, and discuss its possible connection to the "resonance peak" observed in neutron scattering experiments on cuprate superconductors. At high energy, various structures are possible as a function of coupling strength and configuration, including a high energy square-shaped continuum originally attributed to the quantum excitations of spin ladders. On the other hand, we find that simple checkerboard patterns are inconsistent with experimental results from neutron scattering.Comment: 11 pages, 13 figures, for high-res figs, see http://physics.bu.edu/~yaodx/spinwave2/spinw2.htm

    Final Report: Wall Effects in Cavity Flows

    Get PDF
    The wall effects in cavity flows past an arbitrary two-dimensional body is investigated for both pure-drag and lifting cases based on an inviscid nonlinear flow theory. The over-all features of various theoretical flow models for inviscid cavity flows under the wall effects are discussed from the general momentum consideration in comparison with typical viscous, incompressible wake flows in a channel. In the case of pure drag cavity flows, three theoretical models in common use, namely, the open-wake, Riabouchinsky and re-entrant jet models, are applied to evaluate the solution. Methods of numerical computation are discussed for bodies of arbitrary shape, and are carried out in detail for wedges of all angles. The final numerical results are compared between the different flow models, and the differences pointed out. Further analysis of the results has led to development of several useful formulas for correcting the wall effect. In the lifting flow case, the wall effect on the pressure and hydrodynamic forces acting on arbitrary body is formulated for the choked cavity flow in a closed water tunnel of arbitrary shape, and computed for the flat plate with a finite cavity in a straight tunnel

    Reply to Comment on "Quantum phase transition in the four-spin exchange antiferromagnet"

    Full text link
    We argue that our analysis of the J-Q model, presented in Phys. Rev. B 80, 174403 (2009), and based on a field-theory description of coupled dimers, captures properly the strong quantum fluctuations tendencies, and the objections outlined by L. Isaev, G. Ortiz, and J. Dukelsky, arXiv:1003.5205, are misplaced

    A Practical Guide for X-Ray Diffraction Characterization of Ga(Al, In)N Alloys

    Full text link
    Ga(In, Al)N alloys are used as an active layer or cladding layer in light emitting diodes and laser diodes. x-ray diffraction is extensively used to evaluate the crystalline quality, the chemical composition and the residual strain in Ga(Al,In)N thin films, which directly determine the emission wavelength and the device performance. Due to the minor mismatch in lattice parameters between Ga(Al, In)N alloy and a GaN virtual substrate, x-ray diffraction comes to a problem to separate the signal from Ga(Al,In)N alloy and GaN. We give a detailed comparison on different diffraction planes. In order to balance the intensity and peak separation between Ga(Al,In)N alloy and GaN, (0004) and (1015) planes make the best choice for symmetric scan and asymmetric scan, respectively.Comment: 9 pages, 5 figure

    Baryon enhancement in high-density QCD and relativistic heavy ion collisions

    Full text link
    We argue that the collinear factorization of the fragmentation functions in high energy nuclear collisions breaks down at transverse momenta pTQs/gp_T \lesssim Q_s/g due to high parton densities in the colliding hadrons and/or nuclei. We find that gluon recombination dominates in that pTp_T region. We calculate the inclusive cross-section for π\pi meson and nucleon production using the low energy theorems for the scale anomaly in QCD, and compare our quantitative baryon-to-meson ratio to the RHIC data.Comment: 4 pages, 2 figure; Contribution to Quark Matter 2008 in Jaipur, India; submitted to J. Phys.

    The Flexible Group Spatial Keyword Query

    Full text link
    We present a new class of service for location based social networks, called the Flexible Group Spatial Keyword Query, which enables a group of users to collectively find a point of interest (POI) that optimizes an aggregate cost function combining both spatial distances and keyword similarities. In addition, our query service allows users to consider the tradeoffs between obtaining a sub-optimal solution for the entire group and obtaining an optimimized solution but only for a subgroup. We propose algorithms to process three variants of the query: (i) the group nearest neighbor with keywords query, which finds a POI that optimizes the aggregate cost function for the whole group of size n, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup and a POI that optimizes the aggregate cost function for a given subgroup size m (m <= n), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding POIs for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we provide theoretical bounds and conduct extensive experiments with two real datasets which verify the effectiveness and efficiency of the proposed algorithms.Comment: 12 page

    The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

    Full text link
    We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines amongst all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43 K, 197 K, 397 K, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of H2O trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, Hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter SED along with the azimuthally-averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20-40 um requires a cavity with a constant-density inner region and a power-law density outer region. The best fit model has an envelope mass of 19 solar mass inside a radius of 0.315 pc and a central luminosity of 18.8 solar luminosity. The time since collapse began is 24630-44000 yr, most likely around 36000 yr. The corresponding mass infall rate in the envelope (1.2x105^{-5} solar mass per year) is comparable to the stellar mass accretion rate, while the mass loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.Comment: Accepted for publication in ApJ. 33 pages; 34 figures; 4 table

    Direct Measurement of the Fermi Energy in Graphene Using a Double Layer Structure

    Full text link
    We describe a technique which allows a direct measurement of the relative Fermi energy in an electron system using a double layer structure, where graphene is one of the two layers. We illustrate this method by probing the Fermi energy as a function of density in a graphene monolayer, at zero and in high magnetic fields. This technique allows us to determine the Fermi velocity, Landau level spacing, and Landau level broadening in graphene. We find that the N=0 Landau level broadening is larger by comparison to the broadening of upper and lower Landau levels.Comment: 5 pages, 4 figure
    corecore