10,128 research outputs found
Analysis of Noisy Evolutionary Optimization When Sampling Fails
In noisy evolutionary optimization, sampling is a common strategy to deal
with noise. By the sampling strategy, the fitness of a solution is evaluated
multiple times (called \emph{sample size}) independently, and its true fitness
is then approximated by the average of these evaluations. Previous studies on
sampling are mainly empirical. In this paper, we first investigate the effect
of sample size from a theoretical perspective. By analyzing the (1+1)-EA on the
noisy LeadingOnes problem, we show that as the sample size increases, the
running time can reduce from exponential to polynomial, but then return to
exponential. This suggests that a proper sample size is crucial in practice.
Then, we investigate what strategies can work when sampling with any fixed
sample size fails. By two illustrative examples, we prove that using parent or
offspring populations can be better. Finally, we construct an artificial noisy
example to show that when using neither sampling nor populations is effective,
adaptive sampling (i.e., sampling with an adaptive sample size) can work. This,
for the first time, provides a theoretical support for the use of adaptive
sampling
Transformation of \u3cem\u3eTetrahymena thermophila\u3c/em\u3e with Hypermethylated rRNA Genes
The extrachromosomal rRNA genes (rDNA) of Tetrahymena thermophila contain 0.4% N6-methyladenine. C3 strain rDNA was isolated, hypermethylated in vitro, and microinjected into B strain host cells. Clonal cell lines were established, and transformants were selected on the basis of resistance to paromomycin, conferred by the injected rDNA. The effects of methylation by three enzymes which methylate the sequence 5\u27-NAT-3\u27, the dam, EcoRI, and ClaI methylases, were tested. Hypermethylation of the injected rDNA had no effect on transformation efficiency relative to mock-methylated controls. The injected C3 strain rDNA efficiently replaced host rDNA as the major constituent of the population of rDNA molecules. Hypermethylation of the injected DNA was not maintained through 20 to 25 cell generations
A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems
Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction
2 Fundamentals
3 System Design and Modeling
4 Reconfigurable Control Allocation
5 Fault Diagnostics For Free Flight
6 Force and Torque Observer
7 Trajectory Generation
8 Hybrid Task Priority Control
9 System Integration and Performance Evaluation
10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction
2 Fundamentals
3 System Design and Modeling
4 Reconfigurable Control Allocation
5 Fault Diagnostics For Free Flight
6 Force and Torque Observer
7 Trajectory Generation
8 Hybrid Task Priority Control
9 System Integration and Performance Evaluation
10 Conclusio
- …