136 research outputs found

    A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs

    Get PDF
    RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D) cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell–nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology

    Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro

    Get PDF
    Background: A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. Methods: The RADA16-PTX suspension was prepared simply by magnetic stirring, followed by atomic force microscopy, circular dichroism analysis, dynamic light scattering, rheological analysis, an in vitro release assay, and a cell viability test. Results: The results indicated that RADA16 and PTX can interact with each other and that the amphiphilic peptide was able to stabilize hydrophobic drugs in aqueous solution. The particle size of PTX was markedly decreased in the RADA16 solution compared with its size in water. The RADA16-PTX suspension could form a hydrogel in culture medium, and the elasticity of the hydrogel showed a positive correlation with peptide concentration. In vitro release measurements indicated that hydrogels with a higher peptide concentration had a longer half-release time. The RADA16-PTX hydrogel could effectively inhibit the growth of the breast cancer cell line, MDA-MB-435S, in vitro, and hydrogels with higher peptide concentrations were more effective at inhibiting tumor cell proliferation. The RADA16-PTX hydrogel was effective at controlling the release of PTX and inhibiting tumor cell growth in vitro. Conclusion: Self-assembling peptide hydrogels may work well as a system for drug delivery

    The Philosophy of Logic in China

    Get PDF
    This 70-year retrospective of the Chinese work on philosophy of logic is presented mainly in terms of the notion of the “philosophy of logic”, the notion of logic and the social-cultural role of logic. It generally involves three kinds of questions, namely, how to distinguish philosophical logic from the philosophy of logic, what the nature and scope of logic is from Chinese scholars’ point of view, and why the social-cultural role of logic is underscored in the Chinese context. Finally, some of the prospects for the future studies of philosophy of logic in China are indicated

    A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver

    Get PDF
    This document is the Accepted Manuscript version of the following article: Junfeng Zhang, Yang Xu, Zehong Zhang, Yichuang Sun, Zhihua Wang, and Baoyong Chi, ‘A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver’, IEEE Transactions on Microwave Theory and Practice, Vol. 65 (4): 1303-1314, first published online 16 February 2017. The version of record is available online at DOI: 10.1109/TMTT.2017.266237, Published by IEEE. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A fourth-order quadrature bandpass continuous-time sigma-delta modulator for a dual-channel global navigation satellite system (GNSS) receiver is presented. With a bandwidth (BW) of 33 MHz, the modulator is able to digitalize the downconverted GNSS signals in two adjacent signal bands simultaneously, realizing dual-channel GNSS reception with one receiver channel instead of two independent receiver channels. To maintain the loop-stability of the high-order architecture, any extra loop phase shifting should be minimized. In the system architecture, a feedback and feedforward hybrid architecture is used to implement the fourth-order loop-filter, and a return-to-zero (RZ) feedback after the discrete-time differential operation is introduced into the input of the final integrator to realize the excess loop delay compensation, saving a spare summing amplifier. In the circuit implementation, power-efficient amplifiers with high-frequency active feedforward and antipole-splitting techniques are employed in the active RC integrators, and self-calibrated comparators are used to implement the low-power 3-b quantizers. These power saving techniques help achieve superior figure of merit for the presented modulator. With a sampling rate of 460 MHz, current-steering digital-analog converters are chosen to guarantee high conversion speed. Implemented in only 180-nm CMOS, the modulator achieves 62.1-dB peak signal to noise and distortion ratio, 64-dB dynamic range, and 59.3-dB image rejection ratio, with a BW of 33 MHz, and consumes 54.4 mW from a 1.8 V power supply.Peer reviewe

    Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis

    Get PDF
    BackgroundRheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis.MethodsThis study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis.ResultsA total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to “circular RNA”, “oxidative stress”, “proliferation”, and “migration” have emerged as new hotspots in the field.ConclusionIn this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends

    Constraining the Woods-Saxon potential in fusion reactions based on the neural network

    Full text link
    The accurate determination of the nuclear interaction potential is essential for predicting the fusion cross sections and understanding the reaction mechanism, which plays an important role in the synthesis of superheavy elements. In this work, the neural network, which combines with the calculations of the fusion cross sections via the Hill-Wheeler formula, is developed to optimize the parameters of the Woods-Saxon potential by comparing the experimental values. The correlations between the parameters of Woods-Saxon potential and the reaction partners, which can be quantitatively fitted to a sigmoid-like function with the mass numbers, have been displayed manifestly for the first time. This study could promote the accurate estimation of nucleus-nucleus interaction potential in low energy heavy-ion collisions.Comment: 6 pages, 5 figure

    Transcriptome response of cassava leaves under natural shade

    Get PDF
    Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement

    Transcriptome response of cassava leaves under natural shade

    Get PDF
    Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement
    corecore