16,534 research outputs found

    Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing

    Get PDF
    Multimode fiber optic Bragg grating sensors for strain and temperature measurements using correlation signal processing methods have been developed. Two multimode Bragg grating sensors were fabricated in 62/125 m graded-index silica multimode fiber; the first sensor was produced by the holographic method and the second sensor by the phase mask technique. The sensors have signal reflectivity of approximately 35% at peak wavelengths of 835 nm and 859 nm, respectively. Strain testing of both sensors has been done from 0 to 1000 με and the temperature testing from 40 to 80°C. Strain and temperature sensitivity values are 0.55 pm/με and 6 pm/°C, respectively. The sensors are being applied in a power-by-light hydraulic valve monitoring system

    Numerical Studies of Collapse Behaviour of Multi-Span Beams with Cold Formed Sigma Sections

    Get PDF
    Multi-span cold-formed steel beams are widely used for roof purlin and cladding rails due to their high strength to weight ratio and ease of installation on site. There are a wide variety of cross-sectional shapes e.g. C, Z, top hat and sigma sections. A sigma section possesses several advantages such as high cross-sectional resistances and large torsional rigidities compared with standard Z or C sections. Traditional design methods for cold-formed multi-span steel beams have been based on elastic theory, such as the Effective Width Method (EWM) and the Direct Strength Method (DSM). Both methods ignore the effect of redistribution of moments on the ultimate failure load. A Pseudo-Plastic Design Method (PPDM) has been recently proposed for statically indeterminate structures in order to improve the efficiency of the methods. This method is analogical to conventional plastic design theory by introducing a pseudo-plastic moment resistance (PPMR) to allow for the benefit of redistribution of moments. The objective of this paper is to summarize the efforts in numerical validation of the PPDM method used in the continuous beams. A series of finite element models are described to examine the collapse behaviour of multi-span cold-formed beam systems. Parametric studies are carried out to investigate the influence of geometric dimensions on the collapse behaviours. Comparisons are made between different design methods and laboratory tests for determining the ultimate load, demonstrating that the PPDM method can lead to more economical result when compared with traditional design methods

    Cosmological Information in Weak Lensing Peaks

    Full text link
    Recent studies have shown that the number counts of convergence peaks N(kappa) in weak lensing (WL) maps, expected from large forthcoming surveys, can be a useful probe of cosmology. We follow up on this finding, and use a suite of WL convergence maps, obtained from ray-tracing N-body simulations, to study (i) the physical origin of WL peaks with different heights, and (ii) whether the peaks contain information beyond the convergence power spectrum P_ell. In agreement with earlier work, we find that high peaks (with amplitudes >~ 3.5 sigma, where sigma is the r.m.s. of the convergence kappa) are typically dominated by a single massive halo. In contrast, medium-height peaks (~0.5-1.5 sigma) cannot be attributed to a single collapsed dark matter halo, and are instead created by the projection of multiple (typically, 4-8) halos along the line of sight, and by random galaxy shape noise. Nevertheless, these peaks dominate the sensitivity to the cosmological parameters w, sigma_8, and Omega_m. We find that the peak height distribution and its dependence on cosmology differ significantly from predictions in a Gaussian random field. We directly compute the marginalized errors on w, sigma_8, and Omega_m from the N(kappa) + P_ell combination, including redshift tomography with source galaxies at z_s=1 and z_s=2. We find that the N(kappa) + P_ell combination has approximately twice the cosmological sensitivity compared to P_ell alone. These results demonstrate that N(kappa) contains non-Gaussian information complementary to the power spectrum.Comment: 24 pages, 12 figures, 14 tables. Accepted for publication in PRD (version before proofs

    The role of the Boudouard and water-gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst

    Get PDF
    The Boudouard and the water-gas shift reactions were studied at different temperatures between 453 and 490 K over a Ni/γ-Al2O3 catalyst in a Carberry batch reactor using various mixtures of CO, H2 and CO2. The activity of the Boudouard reaction was found to be low, compared to the water-gas shift reaction, and diminished over time, suggesting that the temperature was too low for significant activity after an initiation period of CO adsorption. Furthermore, the rate of the Boudouard reaction has been reported to decrease in the presence of H2O and H2. The water-gas shift reaction was found to be the main reaction responsible for the production of CO2 in a mixture of CO, H2 and H2O in the batch reactor. The ratio of the total amount of CO consumed to the total amount of CO2 produced showed that the catalyst was also active towards hydrogenation, where the rate of the hydrogenation reaction was very much faster than the water-gas shift reaction. The resulting ratio of pH2 to pCO was found to be extremely low, probably leading to the production of long-chain hydrocarbons. The stoichiometry of the overall reaction was such that for every mole of mole of CO2 produced, 1.5 mol of CO was consumed in the batch reactor. Kinetic studies were performed in the batch reactor. An Eley-Rideal mechanism was found to provide a good agreement with the experimental results over a wide range of partial pressures of steam and CO

    Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP

    Get PDF
    BACKGROUND: AtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes. RESULTS: ATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription. CONCLUSIONS: AtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.published_or_final_versio

    Detection and characterisation of defects in directed energy deposited multi-material components using full waveform inversion and reverse time migration

    Full text link
    Directed energy deposition (DED) is capable in producing complex or high-value components with good mechanical properties. Despite these potential advantages, the quality and integrity of multi-material DED parts, remains a challenging issue that limits its wide applications. Material porosity in multi-material components is detrimental since it may lead to premature structural failure. This paper proposes a two-stage ultrasonic method to characterise the internal structure to enhance the understanding of the process parameters on material porosity. In this method, the low-frequency model building aims at reconstructing background structure and the high-frequency imaging targets at small defects. The first stage is based on the gradient sampling full-waveform inversion for the estimation of the velocity model, which is then used as the initial model for the reverse time migration for reflectivity. The experimental results show that accurate reconstructions of the interface between two materials and defects in multi-material DED components can be achieved

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap
    corecore