129 research outputs found

    Analysis of Weather and Time Features in Machine Learning-aided ERCOT Load Forecasting

    Full text link
    Accurate load forecasting is critical for efficient and reliable operations of the electric power system. A large part of electricity consumption is affected by weather conditions, making weather information an important determinant of electricity usage. Personal appliances and industry equipment also contribute significantly to electricity demand with temporal patterns, making time a useful factor to consider in load forecasting. This work develops several machine learning (ML) models that take various time and weather information as part of the input features to predict the short-term system-wide total load. Ablation studies were also performed to investigate and compare the impacts of different weather factors on the prediction accuracy. Actual load and historical weather data for the same region were processed and then used to train the ML models. It is interesting to observe that using all available features, each of which may be correlated to the load, is unlikely to achieve the best forecasting performance; features with redundancy may even decrease the inference capabilities of ML models. This indicates the importance of feature selection for ML models. Overall, case studies demonstrated the effectiveness of ML models trained with different weather and time input features for ERCOT load forecasting

    Research on the Intelligent Safety Monitoring System of Pipeline Corrosion in Acidic Oil and Gas Fields—II

    Get PDF
    AbstractAll kinds of corrosion monitoring techniques have their own advantages and obvious disadvantages when applied in acidic oil and gas fields. According to the characteristics of various technologies, an intelligent safety monitoring system was established based on electrochemical noise probe with galvanic corrosion probe, electrochemical hydrogen permeation probe and electric resistance probe. This paper presents the development of monitoring unit, system integration, and field test and data analysis. The results demonstrate that electrochemical noise not only determines the occurrence of corrosion, but also shows the characteristic of localized corrosion clearly; electrochemical hydrogen permeation technique reveals several advantages in the monitoring progress including simplicity, high sensitivity and high reliability, while the improved electric resistance probe shows a better environmental suitability. The accuracy and reliability of corrosion monitoring has been greatly increased by this integrated technique which can achieve the consistency and complementation of much information

    Expression of DNMT1 and DNMT3a Are Regulated by GLI1 in Human Pancreatic Cancer

    Get PDF
    BACKGROUND AND AIMS: GLI1, as an indispensable transcriptional factor of Hedgehog signaling pathway, plays an important role in the development of pancreatic cancer (PC). DNA methyltransferases (DNMTs) mediate the methylation of quantity of tumor-related genes. Our study aimed to explore the relationship between GLI1 and DNMTs. METHODS: Expressions of GLI1 and DNMTs were detected in tumor and adjacent normal tissues of PC patients by immunohistochemistry (IHC). PANC-1 cells were treated by cyclopamine and GLI1-siRNA, while BxPC-3 cells were transfected with overexpression-GLI1 lentiviral vector. Then GLI1 and DNMTs expression were analyzed by qRT-PCR and western blot (WB). Then we took chromatin immunoprecipitation (ChIP) to demonstrate GLI1 bind to DNMT1. Finally, nested MSP was taken to valuate the methylation levels of APC and hMLH1, when GLI1 expression altered. RESULTS: IHC result suggested the expressions of GLI1, DNMT1 and DNMT3a in PC tissues were all higher than those in adjacent normal tissues (p<0.05). After GLI1 expression repressed by cyclopamine in mRNA and protein level (down-regulation 88.1±2.2%, 86.4±2.2%, respectively), DNMT1 and DNMT3a mRNA and protein level decreased by 91.6%±2.2% and 83.8±4.8%, 87.4±2.7% and 84.4±1.3%, respectively. When further knocked down the expression of GLI1 by siRNA (mRNA decreased by 88.6±2.1%, protein decreased by 63.5±4.5%), DNMT1 and DNMT3a mRNA decreased by 80.9±2.3% and 78.6±3.8% and protein decreased by 64.8±2.8% and 67.5±5.6%, respectively. Over-expression of GLI1 by GLI1 gene transfection (mRNA increased by 655.5±85.9%, and protein increased by 272.3±14.4%.), DNMT1 and DNMT3a mRNA and protein increased by 293.0±14.8% and 578.3±58.5%, 143.5±17.4% and 214.0±18.9%, respectively. ChIP assays showed GLI1 protein bound to DNMT1 but not to DNMT3a. Results of nested MSP demonstrated GLI1 expression affected the DNA methylation level of APC but not hMLH1 in PC. CONCLUSION: DNMT1 and DNMT3a are regulated by GLI1 in PC, and DNMT1 is its direct target gene

    Survivin knockdown alleviates pathological hydrostatic pressure-induced bladder smooth muscle cell dysfunction and BOO-induced bladder remodeling via autophagy

    Get PDF
    Aim: Bladder outlet obstruction (BOO) leads to bladder wall remodeling accompanying the progression from inflammation to fibrosis where pathological hydrostatic pressure (HP)-induced alteration of bladder smooth muscle cells (BSMCs) hypertrophic and excessive extracellular matrix (ECM) deposition play a pivotal role. Recently, we have predicted survivin (BIRC5) as a potential hub gene that might be critical during bladder fibrosis by bioinformatics analyses from rat BOO bladder, but its function during BOO progression remains unknown. Here, we investigated the role of survivin protein on bladder dysfunction of BOO both in vitro and in vivo.Methods: Sprague-Dawley female rats were divided into three groups: control group, BOO group, and BOO followed by the treatment with YM155 group. Bladder morphology and function were evaluated by Masson staining and urodynamic testing. To elucidate the underlying mechanism, hBSMCs were subjected to pathological HP of 200 cm H2O and co-cultured with the presence or absence of survivin siRNA and/or autophagy inhibitor 3-MA. Autophagy was evaluated by the detection of Beclin1 and LC3B-II expression, proliferation was conducted by the EdU analysis and PCNA expression, and fibrosis was assessed by the examination of Col 1 and Fn expression.Results: BOO led to a gradual alteration of hypertrophy and fibrosis of the bladder, and subsequently induced bladder dysfunction accompanied by increased survivin expression, while these histological and function changes were attenuated by the treatment with YM155. HP significantly increased survivin expression, upregulated Col1 and Fn expression, enhanced proliferation, and downregulated autophagy markers, but these changes were partially abolished by survivin siRNA treatment, which was consistent with the results of the BOO rat experiment. In addition, the anti-fibrotic and anti-proliferative effects of the survivin siRNA treatment on hBSMCs were diminished after the inhibition of autophagy by the treatment with 3-MA.Conclusion: In summary, the upregulation of survivin increased cell proliferation and fibrotic protein expression of hBSMC and drove the onset of bladder remodeling through autophagy during BOO. Targeting survivin in pathological hBSMCs could be a promising way to anti-fibrotic therapeutic approach in bladder remodeling secondary to BOO

    Short-term clinical outcomes and five-year survival analysis of laparoscopic-assisted transanal natural orifice specimen extraction versus conventional laparoscopic surgery for sigmoid and rectal cancer: a single-center retrospective study

    Get PDF
    BackgroundThe cosmetic benefits of natural orifice specimen extraction (NOSE) are easily noticeable, but its principles of aseptic and tumor-free procedure have caused controversy.MethodsWe conducted a retrospective analysis of the clinical data of patients who underwent laparoscopic-assisted transanal NOSE or conventional laparoscopic surgery (CLS) for sigmoid and rectal cancer at our hospital between January 2018 and December 2018. The study aimed to compare the general characteristics, perioperative indicators, postoperative complications, and five-year follow-up results between the two groups.ResultsA total of 121 eligible patients were enrolled, with 52 underwent laparoscopic-assisted transanal NOSE and 69 underwent CLS. There were no significant differences observed between the two groups in terms of gender, age, body mass index (BMI), TNM stage, etc. (P &gt; 0.05). However, the NOSE group exhibited significantly shorter total incision length and longer operation time compared to the CLS group (P &lt; 0.05). There were no statistically significant differences observed between the two groups in terms of positive rate of bacterial culture, incidence rates of intraabdominal infections or anastomotic leakage (P &gt; 0.05). Furthermore, during follow-up period there was no statistically significant difference observed between these two groups concerning overall survival rate and disease-free survival outcomes (P &gt; 0.05).ConclusionsThe management of surgical complications in CLS is exemplary, with NOSE presenting a sole advantage in terms of incision length albeit at the cost of prolonged operative time. Therefore, NOSE may be deemed appropriate for patients who place high emphasis on postoperative cosmetic outcomes

    Identification of RegIV as a Novel GLI1 Target Gene in Human Pancreatic Cancer

    Get PDF
    GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1.GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA).The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001). These results were verified for protein (R = 0.939, p = 0.018) and mRNA expression (R = 0.959, p = 0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively) when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively) induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells.GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer

    Electromyography-Based Intentional-Deception Behavior Analysis in an Interactive Social Context: Statistical Analysis and Machine Learning

    No full text
    Lying is a common&nbsp;social&nbsp;behavior, and accurate lie detection is crucial&nbsp;in&nbsp;areas such as national security. However, existing lie detection techniques have certain limitations. Therefore, more accurate and reliable tools and methods are needed to meet the practical needs of lie detection.&nbsp;In&nbsp;this&nbsp;context, this study discovered the potential value of electromyography (EMG) as a lie detection indicator. Specifically, this study used EMG for&nbsp;statistical&nbsp;analysis&nbsp;and&nbsp;machine&nbsp;learning&nbsp;recognition&nbsp;analysis&nbsp;of the lying process&nbsp;in&nbsp;an&nbsp;interactive&nbsp;scenario of active lying. Furthermore, we compared the performance of two traditional&nbsp;machine&nbsp;learning&nbsp;models and one deep&nbsp;learning&nbsp;model for lie detection based on EMG signals.&nbsp;In&nbsp;particular, time-dimensional and time-frequency-dimensional EMG features were used to mine and lie related features.&nbsp;Statistical&nbsp;results showed that compared to truth-telling, people tend to suppress their facial expressions when preparing to lie. Some facial muscle movements that were not be successfully suppressed after lying may be crucial for detecting lies. Moreover, our study offers theoretical hypotheses for the occurrence of micro-expressions and the feature of upper-lower facial asymmetry. Besides the&nbsp;statistic&nbsp;analysis, the&nbsp;analysis&nbsp;results of&nbsp;machine&nbsp;learning&nbsp;also demonstrated demonstrate the potential of&nbsp;machine&nbsp;learning&nbsp;models for EMG-based intelligent lying process&nbsp;analysis, particularly the RUSBoosted tree.&nbsp;In&nbsp;addition, our experiment result also proved that focusing on specific facial muscles, such as Corrugator supercilii, could improve the accuracy and efficiency of intelligent algorithms.&nbsp;In&nbsp;summary, our research results provide more insights into the cognitive and facial muscle movement patterns involved&nbsp;in&nbsp;lying based on&nbsp;statistical&nbsp;analysis&nbsp;and&nbsp;machine&nbsp;learning.</p

    Prediction of State-of-Health for Nickel-Metal Hydride Batteries by a Curve Model Based on Charge-Discharge Tests

    No full text
    Based on charge-discharge cycle tests for commercial nickel-metal hydride (Ni-MH) batteries, a nonlinear relationship is found between the discharging capacity (Cdischarge, Ah) and the voltage changes in 1 s occurring at the start of the charging process (ΔVcharge, mV). This nonlinear relationship between Cdischarge and ΔVcharge is described with a curve equation, which can be determined using a nonlinear least-squares method. Based on the curve equation, a curve model for the state-of-health (SOH) prediction is constructed without battery models and cycle numbers. The validity of the curve model is verified using (Cdischarge, ΔVcharge) data groups obtained from the charge-discharge cycle tests at different rates. The results indicate that the curve model can be effectively applied to predict the SOH of the Ni-MH batteries and the best prediction root-mean-square error (RMSE) can reach upto 1.2%. Further research is needed to confirm the application of this empirical curve model in practical fields

    Effect of Plant Growth Regulators on Cotton Seedling Root Growth Parameters and Enzyme Activity

    No full text
    It is well known that the survival rate of cotton seedlings is low, and the growth and development status at this stage is crucial to improve productivity. Plant hormones are important factors that promote the growth and development of cotton seedlings. Growth regulators have the same function as plant hormones. The purpose of this research is to explore the effects of different concentrations of growth regulators on cotton root morphological parameters and enzyme activities, and to find suitable plant growth regulators and their optimal concentrations to improve the growth of the cotton seedling root system. Three cotton varieties, “Zhongmian 619” (Z619), “Xinluzao 27” (Z27), and “Xinluzao 39” (Z39), and three growth regulators, gibberellin (GA3), salicylic acid (SA), and paclobutrazol (PP333), at three concentrations were used in our experiment. In Z619 and Z27, 0.050 mg/L GA3 significantly increased the total root length. Similarly, 0.010 mmol/L SA significantly increased the root growth parameters of Z619 and Z39. In Z619, 0.1 mg/L PP333 significantly increased the total root length and total surface area and reduced the average root diameter. For all three cotton varieties, 0.050 mg/L GA3 increased peroxidase (POD) activity in the roots. In Z27 and Z39, 0.80 mg/L GA3 increased superoxide dismutase (SOD) activity in the roots. All SA concentrations increased SOD activity in roots of Z619 and Z27; 0.10 mg/L PP333 significantly increased SOD and POD activities in the roots of Z619 and significantly increased SOD activity in Z27. Principal component analysis indicated that 0.10 mmol/L SA was the optimal treatment for promoting the development of the roots of Z619 and 0.050 mmol/L SA was the optimal treatment for promoting the development of the roots of Z27 and Z39
    corecore