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In the past 20 years, much progress has been made on the genetic analysis of osteoporosis. A number of genes and SNPs associated
with osteoporosis have been found through GWAS method. In this paper, we intend to identify the suspected risky SNPs of
osteoporosis with computational methods based on the known osteoporosis GWAS-associated SNPs. The process includes two
steps. Firstly, we decided whether the genes associated with the suspected risky SNPs are associated with osteoporosis by using
random walk algorithm on the PPI network of osteoporosis GWAS-associated genes and the genes associated with the suspected
risky SNPs. In order to solve the overfitting problem in ID3 decision tree algorithm, we then classified the SNPs with positive
results based on their features of position and function through a simplified classification decision tree which was constructed by
ID3 decision tree algorithm with PEP (Pessimistic-Error Pruning). We verified the accuracy of the identification framework with
the data set of GWAS-associated SNPs, and the result shows that this method is feasible. It provides a more convenient way to
identify the suspected risky SNPs associated with osteoporosis.

1. Introduction

Osteoporosis is a type of systemic skeletal disease that is
characterized by reduced bone mass and microarchitecture
deterioration of bone tissues, thereby leading to the loss of
strength and increased risk of fractures [1]. It is one of the age-
related diseases with arteriosclerosis, hypertension, diabetes,
and cancer. Currently, none of the medical methods is safe
and effective to cure osteoporosis. Therefore, it is necessary
to provide theoretical basis for developing a medical strategy
to cure the disease from the pathogenesis of osteoporosis.

With the completion of the InternationalHapMapProject
and 1000 Genomes Project, about ten millions SNPs of
human were annotated, among which more than 3 million
are common SNPs. Genetic analysis has reached the stage
of genome-wide association study (GWAS). The GWAS is
applied to the study of 40 kinds of diseases that are related
to more than 500 thousands SNPs [2].

Osteoporosis is a complex and polygenic disease of bone
system with the heritability of bone mass is about 60–80%
[3]. Much progress has been made on the genetic analysis
of osteoporosis in the past 20 years and it has been found
that a lot of genes and SNPs are associated with osteoporosis
through GWAS [4, 5].

Computational biology refers to the development and
application of data analysis, the theory of data method,
mathematical modeling, and computer simulation technol-
ogy, used in the study of biology, behavioral, and social
group system of a discipline [6]. The rapid mass of biological
data accumulation is unprecedented in the history of human
science. Now, a variety ofmethods and tools of computational
biology through the Internet have been successfully applied
in every aspect in the field of biological research. They are
powerful for post-GWAS studies [7] and could identify the
potential and promising causal SNPs that require experimen-
tal tests for follow-up functional studies. Extensive work has
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been done in this area in recent years. The performances
were well validated through identifying numerous disease-
associated SNPs for further study and revealing previously
unknown mechanisms for complex diseases [8].

The method of computational biology can also be used
to study and understand these osteoporosis-susceptible genes
and the function of SNP. All the osteoporosis associated
genes and SNPs (including linkage disequilibrium (LD)
SNPs) sequence information were collected and aggregated
from the national center for biological information (NCBI)
database, and the effects of osteoporosis GWAS-associated
lead SNPS and their linked SNPs to transcription factor (TF)
binding affinity were studied through JASPAR database. At
the same time, the osteoporosis GWAS-associated genes have
also been analyzed with Protein-Protein Interaction (PPI)
network analysis tool in the study of the osteoporosis GWAS-
associated SNPs associated by the online PPI tool named
String. Combining with GO and pathway analysis, we found
that the hub proteins associated and the Wnt signaling path-
way were related to themesenchymal stem cell differentiation
and hormone signaling that was related to the metabolism of
osteoporosis [9]. Finally, it was found that the osteoporosis
GWAS-associated SNPs in special region of genes had long-
range interaction signal with other locus by analyzing the
long-range interaction of osteoporosis associated SNPs on
GWAS3D [10].

In the BIBM workshop paper [11], we utilized the known
osteoporosisGWAS-associated SNPs and genes as the data set
to identify the osteoporosis suspected risky SNPs.Theprocess
for identification was achieved by computation method. In
this extension, we made some improvements on the paper.
Firstly, we had achieved graphical description for the SNPs
identification process. We added a flow chart for the paper
to describe the process of identification method that made
the method more intuitive. Secondly, we used ID3 decision
tree algorithm with PEP method instead of ID3 decision
tree algorithm in the second part of the method. We made
the improvement to solve the overfitting problem in ID3
decision tree algorithm; we used the C4.5 algorithm to
make a comparison with our ID3-PEP algorithm. Finally,
we added type 2 diabetes (T2D) GWAS-associated SNPs and
genes as the negative data set based on osteoporosis GWAS-
associated SNPs and genes to verify the accuracy of the
method comprehensively.

2. Material and Method

We identified the suspected risky SNPs associated with osteo-
porosis by algorithm based on the analysis of osteoporosis
GWAS-associated SNPs with the method mentioned above
[9]. It is assumed that the SNPs that are similar to the
osteoporosis GWAS-associated SNPs are possible risky SNPs
associated with osteoporosis. The identification process of
the suspected risky SNPs includes two steps in general.
Firstly, we constructed a Protein-Protein Interaction (PPI)
network based on the Protein-Protein Interaction analysis
of the osteoporosis GWAS-associated genes and the genes
associated with suspected risky SNPs and identify whether
the genes associated with the suspected risky SNPs are

associatedwith osteoporosis through randomwalk algorithm
based onMarkov chain. By the algorithm,we also selected the
suspected risky SNPs whose associated genes are identified
to be associated with osteoporosis. We then classified those
SNPs based on their characteristics of function and their loci
features by a classification decision tree, and the decision
tree was constructed by ID3 decision tree algorithm with
Pessimistic-Error Pruning. Figure 1 describes the process to
identify the osteoporosis risky SNPs.

2.1.The Identification of Genes Associated with Suspected Risky
SNPs. According to the modular property of the genetic
diseases, many scholars have proposed prioritization algo-
rithms to predict the disease-causing genes based on the PPI,
HumanDisease Network, andDISEASOME recently [12–16].
Similarly, we obtained the scores of the genes associated with
the suspected risky SNPs through the randomwalk algorithm
based on the PPI of the osteoporosis GWAS-associated genes
and the genes associated with suspected risky SNPs. Then,
the result was acquired by setting up a threshold 𝑘, and the
genes associated with suspected risky SNPs are probably the
osteoporosis associated genes if their scores are greater than𝑘.
2.2. The Random Walk Algorithm Based on Markov Chain.
Kohler proposed a method for the problem of candidate-
gene prioritization by random walk algorithm based on the
global network distance of PPI. The results indicate that the
algorithm is more effective than the local network distance
algorithm [17]. The random walk algorithm was applied to
Protein-Protein Interaction network of all associated genes.

Anundirected graph𝐺 = (𝑉, 𝐸) is defined for the Protein-
Protein Interaction network of all associated genes. In the
undirected graph𝐺,𝑉 is the set of vertices for the interactors
of the network. And 𝑉 is defined as 𝑉 = {V1, V2, . . . , V𝑛}; 𝐸 is
the set of edges; and 𝐸 is defined as 𝐸 = {⟨V𝑖, V𝑗⟩ | V𝑖, V𝑗 ∈ 𝑉}.
Every edge in the set of edges corresponds to two nodes of
the set of vertices for the interaction between the interactors.
Moreover, it is assumed that a random process meets the
condition of Markov chain. The random process should be
as follows:

(a) Theprobability distribution of time 𝑡+1 is only related
to the state of time 𝑡, and it is not related to the state
before time 𝑡.

(b) The state transition is not related to the value of 𝑡 from
the time 𝑡 to time 𝑡 + 1. Therefore, the Markov chain
model is defined as

(𝑆, 𝑃, 𝑄) . (1)

𝑆 is a nonempty set that consists of all the possible states
of the system. It is a state space that can be a limited and
denumerable set or a nonempty set. 𝑃 = [𝑃𝑖𝑗]𝑛×𝑛 is the
state transfer-probability matrix, 𝑃𝑖𝑗 is the probability that
the system is in the state 𝑖 at time 𝑡 to the state 𝑗 at time𝑡 + 1.𝑁 is the number of system states. 𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑛−1}
is the initial probability distribution of the system, 𝑞𝑖 is the
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Figure 1: Process to identify the suspected risky SNPs associated with osteoporosis.

probability that the system in state 𝑖 at the initial time, and∑𝑁𝑖=0 𝑞𝑖 = 1.
Based on the above theory model, the random walk on

graphs is defined as an iterative walk’s transition from its
current node to a randomly selected neighbor starting at
given source node [17]. The random walk is defined as

𝑃𝑡+1 = (1 − 𝛼) 𝑃𝑡𝑊+ 𝛼𝑃0. (2)

𝑃𝑡 is a vector in which the 𝑖th element holds the probability of
being at node 𝑖 at time step 𝑡. 𝛼 is a constant between 0 and 1
that it is the restart of the walk in every step at the node 𝑖with
probability 𝛼, and 𝛼 ∈ (0, 1] [17]. 𝑃0 is a row vector of 1 × 𝑛
which is the initial state of the system, and 𝑛 is the element
number of 𝑉. The value of known elements of 𝑃0 is equal,
and the sum of them is 1. And the value of other elements is
0.𝑊 is the transition probability matrix which is defined as

𝑊 = 𝐷−1𝐴. (3)

𝐴 is an adjacency matrix of undirected graph 𝑉. Every
element 𝑎𝑖𝑗 of 𝐴 is defined as follows: if there is interaction

between V𝑖 and V𝑗 in the network, the element 𝑎𝑖𝑗 = 1;
otherwise, 𝑎𝑖𝑗 = 0 the formula is defined as

𝑎𝑖𝑗 = {{{
1, ⟨V𝑖, V𝑗⟩ ∈ 𝐸
0, otherwise. (4)

𝐷 is a diagonal matrix. Each element 𝑑𝑖𝑗 of 𝐷 is defined as
follows: if 𝑖 = 𝑗 then it should have𝑑𝑖𝑗 = 𝑑𝑖𝑖; otherwise𝑑𝑖𝑗 = 0.𝑑𝑖𝑗 is the degree of V𝑖 in the network. The formula is defined
as

𝑑𝑖𝑗 = {{{{{

𝑛∑
𝑘=1

𝑎𝑖𝑘, 𝑖 = 𝑗
0, otherwise.

(5)

The transition probability matrix 𝑊 is also a row-
normalized adjacencymatrix of the graph. Formula (2)meets
the state of stationary distribution of Markov train model
obviously, so the central point of random walk algorithm is
evaluating the stationary distribution state of the probability
of the nodes in the undirected network 𝐺 which consists of
PPI. Firstly, the transition probability matrix 𝑊 should be
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obtained and the initial value is set for 𝑃0. Then, process 𝑡
times iteration based on formula (2) until lim(𝑝𝑡+1 − 𝑝𝑡) =0, 𝑝𝑡+1 is a convergence vector. A threshold is set for the
probability value, and if the probability value of the nodes
(or genes) is greater than the threshold, they are osteoporosis
associated genes.

2.3. Classify the Suspected Risky SNPs by ID3 Decision Tree
Algorithm. ID3 decision tree algorithm is a classification
algorithm for tree structure [18, 19].The goal of the algorithm
is to predict target variable based on multiple input variables
and deduce a classification rule with decision tree form from
a group of irregular samples.We assume that all input charac-
teristic elements have a limited discrete domain and need an
individual characteristic element as a category. The nonleaf
nodes of a classification decision tree classify the samples by
characteristics of samples, and each leaf node of the tree is
a class or classes of probability distribution. Therefore, we
chose decision tree to classify the SNP based on the condition
of the training set and algorithm characteristics.

SNPs located within the promoter or distant enhancer
region of genes may alter the binding of TFs with DNA and
subsequently regulate gene expression [20]. The suspected
risky SNPs are classified by ID3 decision tree algorithm based
on four features of significant position on genes, mapping on
putative enhancer region, mapping on distal interaction, and
the region where the SNPs are located [21].

The decision tree algorithm chooses the attribute with
the maximum information gain after it is split, and the
algorithm searches the decision-space by way of top-down
greedy algorithm. 𝑆 is defined as the training set of SNPs
with their loci features, and the training set is divided into𝑛 classes. That is, 𝐶 = {𝑆1, 𝑆2, . . . , 𝑆𝑛}. The number of the
training instances in 𝑖th class is defined as |𝑆𝑖| = 𝐶𝑖. The
number of the training instances in 𝑆 is |𝑆|. The probability
that a training instance belongs to the 𝑖th class is 𝑃(𝑆𝑖). And
a formula is defined as

𝑃 (𝑆𝑖) = 𝐶𝑖|𝑆| . (6)

For the training set 𝑆,𝐻(𝑆) is defined as the information
entropy of 𝐶, and we have the formula

𝐻(𝑆) = − 𝑛∑
𝑖=1

𝑃 (𝑆𝑖) log2𝑃 (𝑆𝑖) . (7)

The greater the value of information entropy 𝐻(𝑆) is,
the smaller the degree of uncertainty for the division of 𝐶
is. The attribute 𝑇 is selected as the test attribute which is
the loci features of the training set SNPs, and the value set
for attribute 𝑇 is 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}. The probability of the
attribute belongs to 𝑖th class when 𝑇 = 𝑡𝑗 can be formulated
as

𝑃 (𝑆𝑖 | 𝑇 = 𝑡𝑗) = 𝐶𝑖𝑗|𝑆| . (8)

𝐶𝑖𝑗 is the number of training instances which belongs to 𝑖th
class.

When the attribute 𝑇 = 𝑡𝑗, a formula is used to define the
conditional entropy of the attribute 𝑇 as

𝐻(𝑋𝑗) = − 𝑛∑
𝑖=1

𝑃 (𝑆𝑖 | 𝑇 = 𝑡𝑗) log2𝑃 (𝑆𝑖 | 𝑇 = 𝑡𝑗) . (9)

𝑋𝑗 is the training instances set of training set 𝑆.
The information entropy of attribute 𝑇 is defined as

IG (𝑇) = 𝐻 (𝑆) − 𝑚∑
𝑗=1

𝑃 (𝑆𝑖 | 𝑇 = 𝑡𝑗)𝐻 (𝑋𝑗) . (10)

We built a top-down decision tree and classified the train-
ing instances by choosing the attribute with the maximum
information entropy based on the formulas above.

However, the overfitting problem could not be avoided if
there were many noise samples in the training set, because of
a complicated classification decision tree constructed by ID3
decision tree algorithm with a fair amount of noise samples
in the training set. To solve the problem, a PEP (Pessimistic-
Error Pruning) algorithm was exerted on the ID3 decision
tree classification algorithm. PEP is the most accurate top-
down pruning strategywhich deals with the pruning problem
without separating the training set.

We define a decision tree 𝑇 which grows on a large scale
based on the training set of SNPs with their loci features.𝑇1 is
a nonleaf node set, 𝑇2 is a leaf node set, and 𝑇3 is for all nodes
of 𝑇. The formula is 𝑇3 = 𝑇1 ∪ 𝑇2.

Before pruning, we define 𝑟(𝑡) as the error rate of node 𝑡
in the decision tree. The formula is

𝑟 (𝑡) = 𝑒 (𝑡)𝑛 (𝑡) . (11)

𝑛(𝑡) is the number of samples in node 𝑡, and 𝑒(𝑡) is the number
of samples that does not belong to node 𝑡 actually.

We define 𝑇𝑡 as a subtree of the decision tree 𝑇, and 𝑡 is
the root node of 𝑇𝑡. So the error rate of the subtree 𝑇𝑡 is

𝑟 (𝑇𝑡) = ∑𝑠∈𝑆
𝑡

𝑒 (𝑠)
∑𝑠∈𝑆

𝑡

𝑛 (𝑠) . (12)

𝑆𝑡 is the leaf node set of subtree 𝑇𝑡, and we define 𝑆𝑡 ={𝑠1, 𝑠2, . . . , 𝑠𝑛}.
Apparently, the formula for error rate of the subtree 𝑇𝑡

is binomial distribution. We define a continuity correction
factor 𝑟(𝑡) in order to make the binomial distribution
approach the normal distribution. And the formula is

𝑟 (𝑡) = 𝑒 (𝑡) + 1/2𝑛 (𝑡) . (13)

Therefore, we deduce the continuity correction factor for
the subtree 𝑇𝑡. The formula is

𝑟 (𝑇𝑡) = ∑𝑠∈𝑆
𝑡

[𝑒 (𝑠) + 1/2]
∑𝑠∈𝑆

𝑡

𝑛 (𝑠) = ∑𝑠∈𝑆
𝑡

𝑒 (𝑠) + 𝑆𝑡 /2∑𝑠∈𝑆
𝑡

𝑛 (𝑠) . (14)
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In order to simplify the formula, we define 𝑒(𝑡) as the
error sample number instead of error rate. So the error sample
number of node 𝑡 in the decision tree 𝑇 is

𝑒 (𝑡) = 𝑒 (𝑡) + 12 . (15)

Therefore, the error sample number of the subtree 𝑇𝑡 is
𝑒 (𝑇𝑡) = ∑

𝑠∈𝑆
𝑡

𝑒 (𝑠) + 𝑆𝑡2 . (16)

Similarly, the formula for the error sample number
of subtree 𝑇𝑡 is binomial distribution. And the standard
deviation for 𝑒(𝑇𝑡) is defined as

SE (𝑒 (𝑇𝑡)) = [𝑒
 (𝑇𝑡) × (𝑛 (𝑡) − 𝑒 (𝑇𝑡))𝑛 (𝑡) ]

1/2

. (17)

Finally, we deduce from formulas above that the subtree𝑇𝑡 will be cut if the node 𝑡meets the condition:

𝑒 (𝑡) ≤ 𝑒 (𝑇𝑡) + SE (𝑒 (𝑇𝑡)) . (18)

The process of the PEP algorithm is as follows:

Algorithm: PEP
Begin
Input: decision tree 𝑇 before pruned
Output: decision tree 𝑇 after pruned
(1) Get the nonleaf node set 𝑇1 of the decision tree 𝑇
(2) For 𝑘 = 1 to length (𝑇1)
(3) Do get a subtree 𝑇𝑡 whose root node is𝑡[𝑘] (𝑡[𝑘] ∈ 𝑇1)
(4) If (𝑒(𝑡) ≤ 𝑒(𝑇𝑡) + 𝑆𝐸(𝑒(𝑇𝑡)))
(5) Then delete 𝑇𝑡
(6) Else 𝑘 + +
(7) End
End

We classified the suspected risky SNPs effectively based
on their loci characteristics and studied their functions
according the ID3 decision tree algorithm and PEP.

3. Results

By the end of 2014, nine GWAS and nine meta-analyses
had reported 107 genes and 129 SNPs (lead SNP) that were
associated with BMD, osteoporosis, or fractures with a signif-
icant threshold of 5 × 10−8. 222 SNPs linked to osteoporosis
GWAS-associated lead SNPs had also been identified by using
LD information in the Caucasians population via HapMap
website [9]. Moreover, we obtained 107 known osteoporosis
GWAS-associated genes which showed significant connec-
tivity among proteins. And there were interactions between

Table 1: Part of the classification of training set.

SNP bda td Enhancer Gene region Class
rs7524102 Y Y Y Intergenic C
rs34920465 Y Y Y Control region D
rs6426749 Y N Y Control region G
rs1430742 N N N Cording sequence B
rs6929137 Y Y Y Missense A
rs479336 Y Y N Cording sequence K
rs11898505 Y N Y Intergenic F
rs17040773 Y Y Y Cording sequence E
rs344081 Y N Y Cording sequence H
rs6909279 Y Y N Intergenic I
(a) The first column is part of osteoporosis GWAS-associated SNPs; (b)
the column of “bda,” “td,” and “enhancer” means whether the SNP is on
significant TFs binding affinity, mapping on distal interaction, and mapping
on putative enhancer region; (c) the last column is the category the SNP
belong to.

osteoporosis GWAS-associated genes and interactors. We
used the common Protein-Protein Interaction databases,
such as Human Protein Interaction database (HPID) and
General Repository for Interaction Data (GRID), to find
the interactors which had interactions with the osteoporosis
GWAS-associated genes and their interactions. Then, we
obtained the interaction network graph by Cytoscape v3.4.0.
Figure 2 is the PPI of osteoporosis GWAS-associated genes.

The result was verified by 10-fold cross-validation based
on the data set of osteoporosis GWAS-associated genes and
SNPs. We divided the data set of 129 osteoporosis GWAS-
associated lead SNPs and 222 SNPs linked with them into 10
samples. One sample was then randomly chosen and saved as
the validation set to verify themodel from the 10 samples, and
the other 9 sampleswere saved as training set.The verification
process was repeated 10 times so that each sample was the
validation set once, and the accuracy was calculated every
time. A 10-fold cross-validationwas completed by the process
above.

We set a threshold 𝑘 (𝑘 > 10−3) as a result of the
validation. The recall was calculated, which was the true
positive result to positive result ratio. The 10-fold cross-
validation was repeated for ten times and the average recall
rate of every validation was calculated. The result was shown
in Figure 3.

The classification result was also verified by 10-fold cross-
validation. The osteoporosis GWAS-associated SNPs were
used as the data set. The SNPs of training set were classified
based on their loci features. Part of classification of the
training set was shown in Table 1. We classified the SNPs
of validation set through ID3 decision tree algorithm and
recorded the accuracy of classification, which was the pro-
portion of classification accurate samples to all the samples.

Then, the process of validation was repeated for ten
times and calculated the average accuracy rate and average
classification reliability. The result was shown in Figure 4.

We also used genome-wide association studies (GWAS)
of type 2 diabetes (T2D) data as negative data to verify
our method [22]. 50 lead SNPs of T2D were obtained with
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Figure 2: PPI of osteoporosis GWAS-associated genes (the pink nodes indicated those which had interactions with the osteoporosis GWAS-
associated genes, and the yellow nodes indicated the osteoporosis GWAS-associated genes).
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Figure 3: Result of random walk (the ten colors of the points
indicated ten 10-fold cross-validation, and the same color of points
indicated the validation process.The points connected by a line were
the average recall value of ten experiments. The 𝑥-axis was the 10-
step verification of the 10-fold cross-validation process).

their position features and associated genes. We searched the
interactors of the associate genes from the PPI database and
constructed the PPI network with the known osteoporosis
GWAS-associated genes. The random walk algorithm was
used on the PPI network.

We then used PEP for ID3 decision tree to construct a
simplified classification decision tree. We combined the two
steps of the risky SNPs identification method and verified
the method by 10-fold cross-validation. Finally, we found
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Figure 4: Result of ID3 decision tree (the blue credibility refers
to the average accuracy values of 10-fold cross-validation, and the
orange credibility refers to the average reliability value).

that not only was the computation efficiency improved, but
also the accuracy rate of the result by using ID3 decision
tree algorithm with PEP in the identification method was
higher. The improvement is due to the fact that we had cut
the subtrees which were constructed by the noise samples
and solved the overfitting problem. While we defined ID3
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Figure 5: Comparison of two classification algorithm (the blue
credibility refers to the classification accuracy by ID3 algorithm,
and the yellow credibility refers to the classification accuracy by ID3
decision tree algorithm with PEP).

decision tree algorithmwith PEP in the identificationmethod
as ID3-PEP and ID3 decision tree algorithm as ID3, the result
comparison of these two classification algorithm in the iden-
tificationmethodwas described by Figure 5. According to the
result, we concluded that the ID3-PEP in the identification
methodwasmore stable than ID3 algorithm, and it had better
effect for the classification problem.

C4.5 is the optimization of ID3. They have the same
way to learn training set and build a classification decision
tree, but the difference of them is the way of choosing split
attribute. C4.5 algorithm chooses the maximum attribute
with information gain ratio to split. In order to solve the
problem of overfitting in ID3 decision tree algorithm, C4.5
algorithm needs to scan the data set and rank them in every
step. This calculation method and process of the algorithm
have low operational efficiency. ID3-PEP algorithm solved
the problem and was more accurate than C4.5. We made
a comparison of these two algorithms through ROC curve,
which is shown in Figure 6. Result shows that ID3-PEP is
better than C4.5 in our classification.

4. Discussion and Conclusion

Since SNP plays a key role in the process of pathology
and susceptibility of osteoporosis [23], it is necessary to
find the unknown risky SNPs. Using the data set of known
osteoporosis GWAS-associated SNPs and genes [8], we iden-
tified the genes of suspected risky SNPs associated with
osteoporosis by random walk algorithm on the PPI network
constructed by osteoporosis GWAS-associated genes and the
genes associated with suspected risky SNPs. The suspected
risky SNPs were classified based on the features of their loci
position and function. We used 10-fold cross-validation to
verify our method.

The result of the experiment above showed that the
identification method for risky SNPs of osteoporosis was
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Figure 6: The comparison of ID3-PEP and C4.5.

correct and effective. Our method efficiently achieved the
process of identifying osteoporosis suspected risky SNPs.

However, there is still a need to perfect the identification
method. First of all, we need to search the loci features of
suspected risky SNPs associated with osteoporosis and the
interactors of associated genes manually. The training set
for our method is the known osteoporosis GWAS-associated
SNPs, which is not large enough to identify the risky SNPs
accurately. Therefore, further research is needed. Firstly, a
workflow can be constructed to improve the identification
process, aiming to automatically identify the suspected risky
SNPs’ features. In order to improve the accuracy of our
method, more features of the SNPs should be examined, such
as the conservation of SNPs and the influence of the SNPs on
miRNA binding site. Finally, we use our method to predict
risky SNPs associated with osteoporosis by constructing the
PPI network of all the human genes.
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Y. H. Hsu, J. B. Richards et al., “Twenty bonemineral-density
loci identified by large-scale meta-analysis of genome-wide
association studies,”Nature Genetics, vol. 41, no. 11, pp. 1199-206,
2009.

[2] D. Welter, J. MacArthur, J. Morales et al., “The NHGRI GWAS
Catalog, a curated resource of SNP-trait associations,” Nucleic
Acids Research, vol. 42, no. 1, pp. D1001–D1006, 2014.

[3] Q.-Y. Huang, R. R. Recker, and H.-W. Deng, “Searching for
osteoporosis genes in the post-genome era: Progress and chal-
lenges,” Osteoporosis International, vol. 14, no. 9, pp. 701–715,
2003.

[4] Q. Huang andA.W. C. Kung, “Genetics of osteoporosis,”Molec-
ular Genetics and Metabolism, vol. 88, no. 4, pp. 295–306, 2006.

[5] J. B. Richards, H. F. Zheng, and T. D. Spector, “Genetics of
osteoporosis from genome-wide association studies: advances
and challenges,”Nature Reviews Genetics, vol. 13, no. 8, pp. 576–
588, 2012.

[6] K. A. Frazer, L. Pachter, A. Poliakov, E. M. Rubin, and I.
Dubchak, “VISTA: computational tools for comparative genom-
ics,” Nucleic Acids Research, vol. 32, pp. W273–W279, 2004.

[7] Q. Y. Huang, “Genetic study of complex diseases in the post-
GWAS era,” Journal of Genetics and Genomics, vol. 42, no. 3, pp.
87–98, 2015.

[8] S. L. Edwards, J. Beesley, J. D. French, and A. M. Dunning,
“Beyond GWASs: illuminating the dark road from association
to function,” American Journal of Human Genetics, vol. 93, no.
5, pp. 779–797, 2013.

[9] L.Qin, Y. Liu, Y.Wang et al., “Computational characterization of
osteoporosis associated SNPs and genes identified by genome-
wide association studies,” Plos One, vol. 11, no. 3, Article ID
e0150070, pp. 1–14, 2016.

[10] M. J. Li, L. Y.Wang, Z. Xia, P. C. Sham, and J.Wang, “GWAS3D:
detecting human regulatory variants by integrative analysis
of genome-wide associations, chromosome interactions and
histonemodifications,”Nucleic acids research, vol. 41, pp.W150–
W158, 2013.

[11] J. Yang,H.Gu, X. Jiang,Q.Huang, X.Hu, andX. Shen, “Walking
in the PPI network to predict the risky SNP of osteoporosis
with decision tree algorithm,” in Proceedings of the 2016 IEEE
International Conference on Bioinformatics and Biomedicine
(IEEE BIBM ’16), pp. 1283–1287, Shenzhen, China, 2016.

[12] K. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and
A. Barabási, “The human disease network,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 104, no. 21, pp. 8685–8690, 2007.

[13] G. R. Abecasis, A. Auton, L. D. Brooks, M. A. DePristo, M. A.
Durbin, and R. E. Handsaker, “An integrated map of genetic
variation from 1, 092 human genomes,” Nature, vol. 467l, no.
7311, pp. 52–58, 2010.

[14] K. Lage, E. O. Karlberg, Z. M. Storling et al., “A human
phenome-interactome network of protein complexes impli-
cated in genetic disorders,” Nature Biotechnology, vol. 25, no. 3,
pp. 309–316, 2007.

[15] X. Wu, R. Jiang, M. Q. Zhang, and S. Li, “Network-based global
inference of human disease genes,” Molecular Systems Biology,
vol. 4, no. 1, 2008.

[16] R. K. Nibbe, S. A. Chowdhury, M. Koyuturk, R. Ewing, and M.
R. Chance, “Protein-protein interaction networks and subnet-
works in the biology of disease,” Systems Biology and Medicine,
vol. 3, no. 3, pp. 357–367, 2010.

[17] S. Kohler, S. Bauer, D. Horn, and P. N. Robinson, “Walking
the interactome for prioritization of candidate disease genes,”
American Journal of Human Genetics, vol. 82, no. 4, pp. 949–
958, 2008.

[18] M. J. Blow, D. J. McCulley, Z. Li et al., “ChIP-seq identification
of weakly conserved heart enhancers,” Nature Genetics, vol. 42,
no. 9, pp. 806–812, 2010.

[19] J. R. Quinlan, “Generating production rules from decision
trees,” in Proceedings of the IJCAI-87, Milan, Italy, 1987.

[20] L. A. Hindorff, P. Sethupathy, H. A. Junkins et al., “Potential eti-
ologic and functional implications of genome-wide association
loci for human diseases and traits,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 106, no.
23, pp. 9362–9367, 2009.

[21] A. Visel, E. M. Rubin, and L. A. Pennacchio, “Genomic views
of distant-acting enhancers,”Nature, vol. 461, no. 7261, pp. 199–
205, 2009.

[22] M.Cheng, X. Liu,M. Yang, L.Han, A. Xu, andQ.Huang, “Com-
putational analyses of type 2 diabetes-associated loci identified
by genome-wide association studies,” Journal of Diabetes, vol. 9,
no. 4, pp. 362–377, 2016.

[23] E. T. Dermitzakis and A. G. Clark, “Evolution of transcription
factor binding sites in mammalian gene regulatory regions:
conservation and turnover,” Molecular Biology and Evolution,
vol. 19, no. 7, pp. 1114–1121, 2002.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


