23,297 research outputs found
, decays with the QCD factorization approach
We studied the nonleptonic , decay with the QCD
factorization approach. It is found that the Cabibbo favored processes of
, , are the promising
decay channels with branching ratio larger than 1\%, which should be observed
earlier by the LHCb Collaboration.Comment: 15 pages, revtex4, version appeared in Advances in High Energy
Physic
System-level, Input-output and New Parameterizations of Stabilizing Controllers, and Their Numerical Computation
It is known that the set of internally stabilizing controller
is non-convex, but it admits convex
characterizations using certain closed-loop maps: a classical result is the
{Youla parameterization}, and two recent notions are the {system-level
parameterization} (SLP) and the {input-output parameterization} (IOP). In this
paper, we address the existence of new convex parameterizations and discuss
potential tradeoffs of each parametrization in different scenarios. Our main
contributions are: 1) We first reveal that only four groups of stable
closed-loop transfer matrices are equivalent to internal stability: one of them
is used in the SLP, another one is used in the IOP, and the other two are new,
leading to two new convex parameterizations of . 2)
We then investigate the properties of these parameterizations after imposing
the finite impulse response (FIR) approximation, revealing that the IOP has the
best ability of approximating given FIR
constraints. 3) These four parameterizations require no \emph{a priori}
doubly-coprime factorization of the plant, but impose a set of equality
constraints. However, these equality constraints will never be satisfied
exactly in numerical computation. We prove that the IOP is numerically robust
for open-loop stable plants, in the sense that small mismatches in the equality
constraints do not compromise the closed-loop stability. The SLP is known to
enjoy numerical robustness in the state feedback case; here, we show that
numerical robustness of the four-block SLP controller requires case-by-case
analysis in the general output feedback case.Comment: 20 pages; 5 figures. Added extensions on numerial computation and
robustness of closed-loop parameterization
- β¦