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We studied the nonleptonic 𝐵
𝑐
→ 𝐵𝑃, 𝐵𝑉 decays with the QCD factorization approach. It is found that the Cabibbo favored

processes of 𝐵
𝑐
→ 𝐵

𝑠
𝜋, 𝐵

𝑠
𝜌, 𝐵

𝑢
𝐾 are the promising decay channels with branching ratio larger than 1%, which should be observed

earlier by the LHCb collaboration.

1. Introduction

The𝐵
𝑐
meson is the ground pseudoscalarmeson of the 𝑏𝑐 sys-

tem [1]. Compared with the heavy unflavored charmonium
𝑐𝑐 and bottomonium 𝑏𝑏, the 𝐵

𝑐
meson is unique in some

respects. (1)Heavy quarkonia could be created in the parton-
parton process 𝑖𝑗 → 𝑄𝑄 at the order of 𝛼2

𝑠
(where 𝑖𝑗 = 𝑔𝑔

or 𝑞𝑞, 𝑄 = 𝑏, 𝑐), while the production probability for the
𝐵
𝑐
meson is at least at the order of 𝛼4

𝑠
via 𝑖𝑗 → 𝐵

(∗)+

𝑐
+ 𝑏𝑐,

where the gluon-gluon fusion mechanism is dominant at
Tevatron and LHC [2]. The 𝐵

𝑐
meson is difficult to produce

experimentally, but it was observed for the first time via the
semileptonic decaymode𝐵

𝑐
→ 𝐽/𝜓ℓ] in𝑝𝑝 collisions by the

CDF collaboration in 1998 [3, 4], which showed the realistic
possibility of experimental study of the 𝐵

𝑐
meson. One of

the best measurements on the mass and lifetime of the 𝐵
𝑐

meson is reported recently by the LHCb collaboration,𝑚
𝐵
𝑐

=

6276.28±1.44±0.36MeV [5] and 𝜏
𝐵
𝑐

= 513.4±11.0±5.7 fs [6].
With the running of the LHC, the 𝐵

𝑐
meson has a promising

prospect. It is estimated that one could expect some 1010 𝐵
𝑐

events at the high-luminosity LHC experiments per year [7,
8]. The studies on the 𝐵

𝑐
meson have entered a new precision

era. (2) For charmonium and bottomonium, the strong and
electromagnetic interactions are mainly responsible for anni-
hilation of the 𝑄𝑄 quark pair into final states. The 𝐵

𝑐
meson,

carrying nonzero flavor number 𝐵 = 𝐶 = ±1 and lying below

the 𝐵𝐷 meson pair threshold, can decay only via the weak
interaction, which offers an ideal sample to investigate the
weak decay mechanism of heavy flavors that is inaccessible
to both charmonium and bottomonium. The 𝐵

𝑐
weak decay

provides great opportunities to investigate the perturbative
and nonperturbative QCD, final state interactions, and so
forth.

With respect to the heavy-light 𝐵
𝑢,𝑑,𝑠

mesons, the doubly
heavy 𝐵

𝑐
meson has rich decay channels because of its

relatively large mass and that both 𝑏 and 𝑐 quarks can decay
individually. The decay processes of the 𝐵

𝑐
meson can be

divided into the following three classes [2, 9–11]: (1) the 𝑐
quark decays with the 𝑏 quark as a spectator; (2) the 𝑏 quark
decays with the 𝑐 quark as a spectator; (3) the 𝑏 and 𝑐 quarks
annihilate into a virtual 𝑊 boson, with the ratios of ∼70%,
20% and 10%, respectively [2]. Up to now, the experimental
evidences of pure annihilation decay mode [class (3)] are still
nothing. The 𝑏 → 𝑐 transition, belonging to the class (2),
offers a well-constructed experimental structure of charmo-
nium at the Tevatron and LHC. Although the detection of
the 𝑐 quark decay is very challenging to experimentalists, the
clear signal of the 𝐵

𝑐
→ 𝐵

𝑠
𝜋 decay is presented by the LHCb

group using the 𝐵
𝑠
→ 𝐷

𝑠
𝜋 and 𝐵

𝑠
→ 𝐽/𝜓𝜙 channels with

statistical significance of 7.7𝜎 and 6.1𝜎, respectively [12].
Anticipating the forthcoming accurate measurements on

the 𝐵
𝑐
meson at hadron colliders and the lion’s share of the 𝐵

𝑐
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decay width from the 𝑐 quark decay [31–33], many theoretical
papers were devoted to the study of the 𝐵

𝑐
→ 𝐵𝑃, 𝐵𝑉 decays

(where 𝑃 and 𝑉 denote the 𝑆𝑈(3) ground pseudoscalar and
vectormesons, resp.), such as [17, 34–37]with the BSWmodel
[38, 39] or IGSWmodel [40], [18, 19, 41] based on the Bethe-
Salpeter (BS) equation, [20–24, 42] with potential models,
[25] with constituent quark model, [26–28] with QCD sum
rules, [43] with the quark diagram scheme, [29, 30] with the
perturbativeQCD approach (pQCD) [44–49], and so on.The
previous predictions on the branching ratios for the 𝐵

𝑐
→

𝐵𝑃, 𝐵𝑉 decays are collected in Table 3. The discrepancies of
previous investigations arise mainly from the different model
assumptions. Recently, several phenomenological methods
have been fully developed to cope with the hadronic matrix
elements and successfully applied to the nonleptonic 𝐵 decay,
such as the pQCD approach [44–49] based on the 𝑘

𝑇

factorization scheme, the soft-collinear effective theory [50–
57] and the QCD-improved factorization (QCDF) approach
[58–63] based on the collinear approximation and power
countering rules in the heavy quark limits. In this paper, we
will study the𝐵

𝑐
→ 𝐵𝑃, 𝐵𝑉 decays with the QCDF approach

to provide a ready reference to the existing and upcoming
experiments.

This paper is organized as follows. In Section 2, we will
present the theoretical framework and the amplitudes for
the 𝐵

𝑐
→ 𝐵𝑃, 𝐵𝑉 decays within the QCDF framework.

Section 3 is devoted to numerical results and discussion.
Finally, Section 4 is our summation.

2. Theoretical Framework

2.1.The EffectiveHamiltonian. The low energy effectiveHam-
iltonian responsible for the nonleptonic bottom-conserving
𝐵
𝑐
→ 𝐵𝑃, 𝐵𝑉 decays constructed by means of the

operator product expansion and the renormalization group
(RG) method is usually written in terms of the four-quark
interactions [64, 65]. Consider

𝐻eff

=

𝐺
𝐹

√2

{

{

{

𝑉
𝑢𝑏
𝑉
∗

𝑐𝑏
[𝐶

𝑎

1
(𝜇)𝑄

𝑎

1
(𝜇) + 𝐶

𝑎

2
(𝜇)𝑄

𝑎

2
(𝜇)]

+ ∑

𝑞
1
,𝑞
2
=𝑑,𝑠

𝑉
𝑢𝑞
1

𝑉
∗

𝑐𝑞
2

[𝐶
1
(𝜇)𝑄

1
(𝜇) + 𝐶

2
(𝜇)𝑄

2
(𝜇)]

+ ∑

𝑞
3
=𝑑,𝑠

𝑉
𝑢𝑞
3

𝑉
∗

𝑐𝑞
3

10

∑

𝑘=3

𝐶
𝑘
(𝜇)𝑄

𝑘
(𝜇)

}

}

}

+ h.c.,

(1)

where the Fermi coupling constant 𝐺
𝐹
≃ 1.166 × 10

−5 GeV−2

[1];𝑄
1,2
,𝑄𝑎

1,2
, and𝑄

3,...,10
are the relevant local tree, annihila-

tion, and penguin four-quark operators, respectively, which
govern the decays in question. The Cabibbo-Kobayashi-
Maskawa (CKM) factor 𝑉

𝑢𝑞
𝑖

𝑉
∗

𝑐𝑞
𝑗

and Wilson coefficients 𝐶
𝑖

describe the coupling strength for a given operator.

Using the unitarity of the CKM matrix, there is a large
cancellation of the CKM factors

𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
+ 𝑉

𝑢𝑠
𝑉
∗

𝑐𝑠
= −𝑉

𝑢𝑏
𝑉
∗

𝑐𝑏
∼ O (𝜆

5

) , (2)

where the Wolfenstein parameter 𝜆 = sin 𝜃
𝑐
= 0.225 37(61)

[1] and 𝜃
𝑐
is theCabibbo angle.Hence, comparedwith the tree

contributions, the contributions of annihilation and penguin
operators are strongly suppressed by the CKM factor. If the
𝐶𝑃-violating asymmetries that are expected to be very small
due to the small weak phase difference for 𝑐 quark decay are
prescinded from the present consideration, then the penguin
and annihilation contributions could be safely neglected.The
local tree operators 𝑄

1,2
in (1) are expressed as follows:

𝑄
1
= [𝑞

2,𝛼
𝛾
𝜇
(1 − 𝛾

5
) 𝑐
𝛼
] [𝑢

𝛽
𝛾
𝜇

(1 − 𝛾
5
) 𝑞

1,𝛽
] ,

𝑄
2
= [𝑞

2,𝛼
𝛾
𝜇
(1 − 𝛾

5
) 𝑐
𝛽
] [𝑢

𝛽
𝛾
𝜇

(1 − 𝛾
5
) 𝑞

1,𝛼
] ,

(3)

where 𝛼 and 𝛽 are the 𝑆𝑈(3) color indices.
The Wilson coefficients 𝐶

𝑖
(𝜇) summarize the physics

contributions from scales higher than 𝜇. They are calculable
with the RG improved perturbation theory and have properly
been evaluated to the next-to-leading order (NLO) [64, 65].
They can be evolved from a higher scale 𝜇 ∼ O(𝑚

𝑊
) down to

a characteristic scale 𝜇 ∼ O(𝑚
𝑐
) with the functions including

the flavor thresholds [64, 65]

�⃗� (𝜇) = 𝑈
4
(𝜇,𝑚

𝑏
)𝑀 (𝑚

𝑏
) 𝑈

5
(𝑚

𝑏
, 𝑚

𝑊
) �⃗� (𝑚

𝑊
) , (4)

where 𝑈
𝑓
(𝜇
𝑓
, 𝜇

𝑖
) is the RG evolution matrix converting

coefficients from the scale 𝜇
𝑖
to 𝜇

𝑓
, and 𝑀(𝜇) is the quark

thresholdmatchingmatrix.The expressions of𝑈
𝑓
(𝜇
𝑓
, 𝜇

𝑖
) and

𝑀(𝜇) can be found in [64, 65]. The numerical values of
LO and NLO 𝐶

1,2
with the naive dimensional regularization

scheme are listed in Table 1. The values of NLO Wilson
coefficients in Table 1 are consistent with those given by [64,
65] where a trick with “effective” number of active flavors𝑓 =
4.15 rather than formula (4) is used.

To obtain the decay amplitudes, the remaining work is
how to accurately evaluate the hadronic matrix elements
⟨𝐵𝑀|𝑄

𝑖
(𝜇)|𝐵

𝑐
⟩ which summarize the physics contributions

from scales lower than 𝜇. Since the hadronic matrix elements
involve long distance contributions, one is forced to use
either nonperturbative methods such as lattice calculations
and QCD sum rules or phenomenological models relying
on some assumptions. Consequently, it is very unfortunate
that hadronic matrix elements cannot be reliably calculated
at present, and that the most intricate part and the dominant
theoretical uncertainties in the decay amplitudes reside in the
hadronic matrix elements.

2.2. Hadronic Matrix Elements. Phenomenologically, based
on the power counting rules in the heavy quark limit, Beneke
et al. proposed that the hadronic matrix elements could be
written as the convolution integrals of hard scattering kernels
and the light cone distribution amplitudes with the QCDF
master formula [58–63]. The QCDF approach is widely
applied to nonleptonic 𝐵 decays and it works well [66–76],
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Table 1: The numerical values of the Wilson coefficients and the effective coefficients for 𝐵
𝑐
→ 𝐵𝜋 decay, where𝑚

𝑐
= 1.275 ± 0.025GeV [1].

𝜇

LO NLO QCDF
𝐶
1

𝐶
2

𝐶
1

𝐶
2

Re (𝑎
1
) Im (𝑎

1
) Re (𝑎

2
) Im (𝑎

2
)

0.8𝑚
𝑐

1.334 −0.587 1.274 −0.503 1.270 0.096 −0.450 −0.218
𝑚
𝑐

1.275 −0.503 1.222 −0.424 1.216 0.068 −0.361 −0.173
1.2𝑚

𝑐
1.239 −0.449 1.189 −0.373 1.184 0.054 −0.306 −0.148

which encourage us to apply the QCDF approach to the
study of 𝐵

𝑐
→ 𝐵𝑃, 𝐵𝑉 decays. Since the spectator is the

heavy 𝑏 quark who is almost always on shell, the virtuality of
the gluon linked with the spectator should be ∼ O(Λ2QCD).
The dominant behavior of the 𝐵

𝑐
→ 𝐵 transition form

factors and the contributions of hard spectator scattering
interactions are governed by soft processes. According to the
basic idea of the QCDF approach [69, 70], the hard and soft
contributions to the form factors entangle with each other
and cannot be identified reasonably, so the physical form
factors are used as the inputs. The hard spectator scattering
contributions are power suppressed in the heavy quark limit.
Finally, the hadronic matrix elements can be written as

⟨𝐵𝑀




𝑄
1,2





𝐵
𝑐
⟩ = ∑

𝑖

𝐹
𝐵
𝑐
→𝐵

𝑖
∫𝑑𝑥𝐻

𝑖
(𝑥)Φ

𝑀
(𝑥)

∝ ∑

𝑖

𝐹
𝐵
𝑐
→𝐵

𝑖
𝑓
𝑀
{1 + 𝛼

𝑠
𝑟
1
+ ⋅ ⋅ ⋅ } ,

(5)

where 𝐹𝐵𝑐→𝐵

𝑖
is the transition form factor and Φ

𝑀
(𝑥) is the

light-cone distribution amplitudes of the emitted meson 𝑀
with the decay constant𝑓

𝑀
.The hard scattering kernels𝐻

𝑖
(𝑥)

are computable order by order with the perturbation theory
in principle. At the leading order 𝛼0

𝑠
, 𝐻

𝑖
(𝑥) = 1, that is,

the convolution integral of (5) results in the meson decay
constant. The hadronic matrix elements are parameterized
by the product of form factors and decay constants, which
are real and renormalization scale independent. One goes
back to the simple “naive factorization” (NF) scenario. At
the order 𝛼

𝑠
and higher orders, the information of strong

phases and the renormalization scale dependence of hadronic
matrix elements could be partly recuperated. Combined the
nonfactorizable contributions with the Wilson coefficients,
the scale independent effective coefficients at the order 𝛼

𝑠
can

be obtained [58–63] as follows:

𝑎
1
= 𝐶

NLO
1

+

1

𝑁
𝑐

𝐶
NLO
2

+

𝛼
𝑠

4𝜋

𝐶
𝐹

𝑁
𝑐

𝐶
LO
2
𝑉,

𝑎
2
= 𝐶

NLO
2

+

1

𝑁
𝑐

𝐶
NLO
1

+

𝛼
𝑠

4𝜋

𝐶
𝐹

𝑁
𝑐

𝐶
LO
1
𝑉,

(6)

where the expressions of vertex corrections are [58–63]

𝑉 = 6 log(
𝑚
2

𝑐

𝜇
2
) − 18 − (

1

2

+ 𝑖3𝜋) 𝑎
𝑀

0

+ (

11

2

− 𝑖3𝜋) 𝑎
𝑀

1
−

21

20

𝑎
𝑀

2
+ ⋅ ⋅ ⋅ ,

(7)

with the twist-2 quark-antiquark distribution amplitudes of
pseudoscalar 𝑃 and longitudinally polarized vector 𝑉meson
in terms of Gegenbauer polynomials [14–16]. One has

𝜙
𝑀
(𝑥) = 6𝑥𝑥

∞

∑

𝑛=0

𝑎
𝑀

𝑛
𝐶
3/2

𝑛
(𝑥 − 𝑥) , (8)

where 𝑥 = 1 − 𝑥; 𝑎𝑀
𝑛

is the Gegenbauer moment and 𝑎𝑀
0
≡ 1.

From the numbers in Table 1, it is found that (1) for the
coefficient 𝑎

1
the nonfactorizable contributions accompanied

by the Wilson coefficient 𝐶
2
can provide ≥10% enhancement

compared with the NF’s result, and a relatively small strong
phase ≤ 5

∘; (2) for the coefficient 𝑎
2
, the nonfactorizable

contributions assisted with the largeWilson coefficient𝐶
1
are

significant. In addition, a relatively large strong phase∼ −155∘
is obtained; (3) the QCDF’s values of 𝑎

1,2
agree basically with

the real coefficients 𝑎
1
≃ 1.20 and 𝑎

2
≃ −0.317 which are

used by previous studies on the 𝐵
𝑐
→ 𝐵𝑃, 𝐵𝑉 decays in

[17, 18, 20–28, 34–37, 42], but with more information on the
strong phases.

2.3. Decay Amplitudes. Within the QCDF framework, the
amplitudes for 𝐵

𝑐
→ 𝐵𝑀 decays are expressed as

A (𝐵
𝑐
→ 𝐵𝑀) = ⟨𝐵𝑀





Heff





𝐵
𝑐
⟩

=

𝐺
𝐹

√2

𝑉
𝑢𝑞
1

𝑉
∗

𝑐𝑞
2

𝑎
𝑖
⟨𝑀




𝐽
𝜇



0⟩ ⟨𝐵






𝐽
𝜇






𝐵
𝑐
⟩ .

(9)

The matrix elements of current operators are defined as

⟨𝑃 (𝑝)




𝑞
1
𝛾
𝜇

(1 − 𝛾
5
) 𝑞

2





0⟩ = −𝑖𝑓

𝑃
𝑝
𝜇

,

⟨𝑉 (𝜖, 𝑝)




𝑞
1
𝛾
𝜇

(1 − 𝛾
5
) 𝑞

2





0⟩ = 𝑓

𝑉
𝑚
𝑉
𝜖
𝜇

,

(10)

where 𝑓
𝑃
and 𝑓

𝑉
are the decay constants of pseudoscalar 𝑃

and vector𝑉mesons, respectively;𝑚
𝑉
and 𝜖 denote the mass

and polarization of vector meson, respectively.
For the mixing of physical pseudoscalar 𝜂 and 𝜂 meson,

we adopt the quark-flavor basis description proposed in [13]
and neglect the contributions from possible gluonium and 𝑐𝑐
compositions; that is,

(

𝜂

𝜂

) = (

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

)(

𝜂
𝑞

𝜂
𝑠

) , (11)

where 𝜂
𝑞
= (𝑢𝑢 + 𝑑𝑑)/√2 and 𝜂

𝑠
= 𝑠𝑠; the mixing angle 𝜙 =

(39.3±1.0)
∘ [13].We assume that the vectormesons are ideally

mixed; that is, 𝜔 = (𝑢𝑢 + 𝑑𝑑)/√2 and 𝜙 = 𝑠𝑠.
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Table 2: The numerical values of input parameters.

Wolfenstein parameters
𝜆 = 0.22537 ± 0.00061 [1] 𝐴 = 0.814

+0.023

−0.024
[1]

𝜌 = 0.117 ± 0.021 [1] 𝜂 = 0.353 ± 0.013 [1]
Decay constant of mesons

𝑓
𝜋
= 130.41 ± 0.20MeV [1] 𝑓

𝐾
= 156.2 ± 0.7MeV [1]

𝑓
𝜂
𝑞

= (1.07 ± 0.02)𝑓
𝜋
[13] 𝑓

𝜂
𝑠

= (1.34 ± 0.06)𝑓
𝜋
[13]

𝑓
𝜌
= 216 ± 3MeV [14–16] 𝑓

𝜔
= 187 ± 5MeV [14–16]

𝑓
𝐾
∗ = 220 ± 5MeV [14–16]

Gegenbauer moments at the scale 𝜇 = 1 GeV
𝑎
𝜋

1
= 𝑎

𝜂
𝑞

1
= 𝑎

𝜂
𝑠

1
= 0 [14–16] 𝑎

𝜋

2
= 𝑎

𝜂
𝑞

2
= 𝑎

𝜂
𝑠

2
= 0.25 ± 0.15 [14–16]

𝑎
𝐾

1
= −𝑎

𝐾

1
= 0.06 ± 0.03 [14–16] 𝑎

𝐾

2
= 𝑎

𝐾

2
= 0.25 ± 0.15 [14–16]

𝑎
‖

1,𝜌
= 𝑎

‖

1,𝜔
= 0 [14–16] 𝑎

‖

2,𝜌
= 𝑎

‖

2,𝜔
= 0.15 ± 0.07 [14–16]

𝑎
‖

1,𝐾

∗ = −𝑎
‖

1,𝐾
∗ = 0.03 ± 0.02 [14–16] 𝑎

‖

2,𝐾
∗ = 𝑎

‖

2,𝐾

∗ = 0.11 ± 0.09 [14–16]

The transition form factors are defined as [38, 39]

⟨𝐵 (𝑘)




𝑞𝛾

𝜇

(1 − 𝛾
5
) 𝑐




𝐵
𝑐
(𝑝)⟩

= [𝑝 + 𝑘 −

𝑚
2

𝐵
𝑐

− 𝑚
2

𝐵

𝑞
2

𝑞]

𝜇

𝐹
𝐵
𝑐
→𝐵

1
(𝑞

2

)

+

𝑚
2

𝐵
𝑐

− 𝑚
2

𝐵

𝑞
2

𝑞
𝜇

𝐹
𝐵
𝑐
→𝐵

0
(𝑞

2

) ,

(12)

where 𝑞 = 𝑝 − 𝑘, and the condition of 𝐹𝐵𝑐→𝐵

0
(0) = 𝐹

𝐵
𝑐
→𝐵

1
(0)

is required compulsorily to cancel the singularity at the pole
𝑞
2

= 0.
For the𝐵

𝑐
→ 𝐵 transition form factors, since the velocity

of the recoiled 𝐵 meson is very low in the rest frame of the
𝐵
𝑐
meson, the wave functions of 𝐵 and 𝐵

𝑐
mesons overlap

strongly. It is believed that the form factors 𝐹𝐵𝑐→𝐵

0,1
should

be close to the result using the nonrelativistic harmonic
oscillator wave functions with the BSWmodel [17]. Consider

𝐹
𝐵
𝑐
→𝐵

0,1
≃ (

2𝑚
𝐵
𝑐

𝑚
𝐵

𝑚
2

𝐵
𝑐

+ 𝑚
2

𝐵

)

1/2

≃ 0.99. (13)

The flavor symmetry breaking effects on the form factors are
neglectable in (13). For simplification, we take 𝐹𝐵𝑐→𝐵

𝑢,𝑑,𝑠

0,1
= 1.0

in our numerical calculation to give a rough estimation.

3. Numerical Results and Discussions

The branching ratios of nonleptonic two-body 𝐵
𝑐
decays in

the rest frame of the 𝐵
𝑐
meson can be written as

B𝑟 (𝐵
𝑐
→ 𝐵𝑀) =

𝜏
𝐵
𝑐

8𝜋

𝑝

𝑚
2

𝐵
𝑐





A (𝐵

𝑐
→ 𝐵𝑀)






2

, (14)

where the lifetime of the 𝐵
𝑐
meson 𝜏

𝐵
𝑐

= 513.4 ± 11.0 ± 5.7 fs
[6] and 𝑝 is the common momentum of final particles. The
decay amplitudesA(𝐵

𝑐
→ 𝐵𝑀) are listed in the Appendix.

The input parameters in our calculation, including the
CKM Wolfenstein parameters, decay constants, and Gegen-
bauer moments of distribution amplitudes in (8), are col-
lected in Table 2. If not specified explicitly, we will take their
central values as the default inputs. Our numerical results on
the 𝐶𝑃-averaged branching ratios are presented in Table 3,
where theoretical uncertainties of the “QCDF” column come
from the CKM parameters, the renormalization scale 𝜇 =
(1 ± 0.2)𝑚

𝑐
, decay constants, and Gegenbauer moments,

respectively. For comparison, previous results calculated with
the fixed coefficients 𝑎

1
≃ 1.22 and 𝑎

2
≃ −0.4 are also listed.

There are some comments on the branching ratios.
(1) From the numbers in Table 3, it is seen that different

branching ratios for the 𝐵
𝑐
→ 𝐵𝑃, 𝐵𝑉 decays were obtained

with different approaches in previous works, although the
same coefficients 𝑎

1,2
are used. Much of the discrepancy

comes from the different values of the transition form
factors. If the same value of the form factor is used, then
the disparities on branching ratios for the 𝑎

1
-dominated 𝐵

𝑐

decays will be highly alleviated. For example, all previous
predictions on B𝑟(𝐵

𝑐
→ 𝐵

𝑠
𝜋) will be about 10% with the

same form factor𝐹𝐵𝑐→𝐵
𝑠

0
≃ 1.0, which is generally in linewith

the QCDF estimation within uncertainties and also agrees
with the recent LHCb measurement [12].
(2)There is a hierarchical structure between the QCDF’s

results on branching ratios for the 𝐵
𝑐
→ 𝐵𝑃 and 𝐵𝑉 decays

with the same final 𝐵
𝑞
meson, for example,

B𝑟 (𝐵
𝑐
→ 𝐵

𝑞
𝜋) >B𝑟 (𝐵

𝑐
→ 𝐵

𝑞
𝜌) ,

B𝑟 (𝐵
𝑐
→ 𝐵

𝑞
𝐾) ≳ 5B𝑟 (𝐵

𝑐
→ 𝐵

𝑞
𝐾
∗

) ,

(15)

which differs from the previous results.There are two decisive
factors. One is the kinematic factor. The phase space for the
𝐵
𝑐
→ 𝐵𝑉 decays is more compressed than that for the 𝐵

𝑐
→

𝐵𝑃 decays, because the mass of the light pseudoscalar meson
(except for the exotic 𝜂meson) is generally less than themass
of the corresponding vector meson with the same valence
quark components. The other is the dynamical factor. The
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Table 4: Hierarchy of amplitudes among the QCDF’s branching ratios for 𝐵
𝑐
decay.

Case Coefficient CKM factor Branching ratio Decay modes
1 a 𝑎

1
|𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
| ∼ 1 ≳10−2 𝐵

𝑠
𝜋, 𝐵

𝑠
𝜌

1 b 𝑎
1

|𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
|, |𝑉

𝑢𝑠
𝑉
∗

𝑐𝑠
| ∼ 𝜆 ≳10−3 𝐵

𝑠
𝐾, 𝐵

𝑑
𝜋, 𝐵

𝑑
𝜌

1 c 𝑎
1

|𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
| ∼ 𝜆

2

≳10−5 𝐵
𝑑
𝐾, 𝐵

𝑑
𝐾
∗

2 a 𝑎
2

|𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
| ∼ 1 ≳10−3 𝐵

+

𝑢
𝐾

0, 𝐵+
𝑢
𝐾

∗0

2 b 𝑎
2

|𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
|, |𝑉

𝑢𝑠
𝑉
∗

𝑐𝑠
| ∼ 𝜆 ≳10−4 𝐵

𝑢
𝜋, 𝐵

𝑢
𝜌, 𝐵

𝑢
𝜔

2 c 𝑎
2

|𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
| ∼ 𝜆

2

≳10−6 𝐵
+

𝑢
𝐾
0, 𝐵+

𝑢
𝐾
∗0

orbital angular momentum for the 𝐵𝑃 final states is ℓ
𝐵𝑃
= 0,

while the orbital angular momentum is ℓ
𝐵𝑉
= 1 for the 𝐵𝑉

final states.
(3) According to the CKM factors and the coefficients

𝑎
1,2
, there is another hierarchy of amplitudes among the

QCDF’s branching ratios for the 𝐵
𝑐
decays, which could

be subdivided into different cases (see Table 4). The CKM-
favored 𝑎

1
-dominated 𝐵

𝑐
→ 𝐵

𝑠
𝜋 decays are expected to

have the largest branching ratio, ∼10%, within the QCDF
framework. In addition, the branching ratios for the Cabibbo
favored 𝐵+

𝑐
→ 𝐵

0

𝑠
𝜌
+, 𝐵+

𝑢
𝐾

0 decays are also larger than 1%,
which might be promisingly detected at experiments.
(4)There are many uncertainties on the QCDF’s results.

The first uncertainty from the CKM factors is small due to
the high precision on Wolfenstein parameter 𝜆 with only
0.3% relative errors [1]. Large uncertainty comes from the
renormalization scale, especially for the 𝑎

2
dominated 𝐵

𝑐
→

𝐵
𝑢
𝑃, 𝐵

𝑢
𝑉 decays. In principle, the second uncertainty could

be reduced by the inclusion of higher order 𝛼
𝑠
corrections to

hadronic matrix elements. It has been showed [77, 78] that
tree amplitudes incorporatingwith theNNLOcorrections are
relatively less sensitive to the choice of scale than the NLO
amplitudes. As aforementioned, large uncertainty mainly
comes from hadron parameters, such as the transition form
factors, which is expected to be cancelled from the rate of
branching ratios. For example,

B𝑟 (𝐵
𝑐
→ 𝐵

𝑠
𝐾)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑠
𝜋)

≈




𝑉
𝑢𝑠






2 𝑓
2

𝐾

𝑓
2

𝜋

≈

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝐾)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝜋)

, (16)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑠
𝐾
∗

)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑠
𝜌)

≈




𝑉
𝑢𝑠






2 𝑓
2

𝐾
∗

𝑓
2

𝜌

≈

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝐾
∗

)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝜌)

,

(17)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑢
𝜋)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝜋)

≈

1

2





𝑎
2






2





𝑎
1






2
≈

B𝑟 (𝐵
𝑐
→ 𝐵

𝑢
𝜌)

B𝑟 (𝐵
𝑐
→ 𝐵

𝑑
𝜌)

. (18)

Particularly, the relation of (18) might be used to give
some information on the coefficients 𝑎

1,2
and to provide an

interesting feasibility research on the validity of the QCDF
approach for the charm quark decay. Finally, we would like to
point out that many uncertainties from other factors, such as
the final state interactions, which deserve the dedicated study,
are not considered here. So one should not be too serious
about the numbers inTable 3.Despite this, our resultswill still

provide some useful information to experimental physicists;
that is, the Cabibbo favored𝐵

𝑐
→ 𝐵

𝑠
𝜋,𝐵

𝑠
𝜌,𝐵

𝑢
𝐾 decays have

large branching ratios ≳ 1%, which could be detected earlier.

4. Summary

In prospects of the potential 𝐵
𝑐
meson at the LHCb experi-

ments, accurate and thorough studies of the 𝐵
𝑐
decays will be

accessible very soon.The carefully theoretical study on the 𝐵
𝑐

decays is urgently desiderated. In this paper, we concentrated
on the nonfactorizable contributions to hadronic matrix
elements within the QCDF framework, while the transition
form factors are taken as nonperturbative inputs, which is
different from previous studies. It is found that the branching
ratios for the Cabibbo favored 𝐵

𝑐
→ 𝐵

𝑠
𝜋, 𝐵

𝑠
𝜌, 𝐵

𝑢
𝐾 decays

are very large and could be measured earlier by the running
LHCb experiment in the forthcoming years.

Appendix

Decay Amplitudes

A (𝐵
+

𝑐
→ 𝐵

0

𝑠
𝜋
+

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑠

0
𝑓
𝜋
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑠

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑠
𝐾
+

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑠

0
𝑓
𝐾
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑠

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑠
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑠
𝜌
+

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑠

1
𝑓
𝜌
𝑚
𝜌
(𝜖
𝜌
⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑠
𝐾
∗+

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑠

1
𝑓
𝐾
∗𝑚

𝐾
∗ (𝜖

𝐾
∗ ⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑠
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑑
𝜋
+

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑑

0
𝑓
𝜋
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑑

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
1
,
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A (𝐵
+

𝑐
→ 𝐵

0

𝑑
𝐾
+

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑑

0
𝑓
𝐾
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑑

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑑
𝜌
+

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑑

1
𝑓
𝜌
𝑚
𝜌
(𝜖
𝜌
⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

0

𝑑
𝐾
∗+

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑑

1
𝑓
𝐾
∗𝑚

𝐾
∗ (𝜖

𝐾
∗ ⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
𝑎
1
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝐾

0

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑢

0
𝑓
𝐾
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑢

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝐾
0

)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑢

0
𝑓
𝐾
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑢

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝐾

∗0

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑢

1
𝑓
𝐾
∗𝑚

𝐾
∗ (𝜖

𝐾
∗ ⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑠
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝐾
∗0

)

= √2𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑢

1
𝑓
𝐾
∗𝑚

𝐾
∗ (𝜖

𝐾
∗ ⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜋
0

)

= +𝑖

𝐺
𝐹

2

𝐹
𝐵
𝑐
→𝐵
𝑢

0
𝑓
𝜋
(𝑚

2

𝐵
𝑐

− 𝑚
2

𝐵
𝑢

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜌
0

)

= −𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑢

1
𝑓
𝜌
𝑚
𝜌
(𝜖
𝜌
⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜔)

= +𝐺
𝐹
𝐹
𝐵
𝑐
→𝐵
𝑢

1
𝑓
𝜔
𝑚
𝜔
(𝜖
𝜔
⋅ 𝑝

𝐵
𝑐

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜂
𝑞
)

= −𝑖

𝐺
𝐹

2

𝐹
𝐵
𝑐
→𝐵
𝑢

0
𝑓
𝜂
𝑞

(𝑚
2

𝐵
𝑐

− 𝑚
2

𝐵
𝑢

)𝑉
𝑢𝑑
𝑉
∗

𝑐𝑑
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜂
𝑠
)

= −𝑖

𝐺
𝐹

√2

𝐹
𝐵
𝑐
→𝐵
𝑢

0
𝑓
𝜂
𝑠

(𝑚
2

𝐵
𝑐

− 𝑚
2

𝐵
𝑢

)𝑉
𝑢𝑠
𝑉
∗

𝑐𝑠
𝑎
2
,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜂)

= cos𝜙A (𝐵+
𝑐
→ 𝐵

+

𝑢
𝜂
𝑞
) − sin𝜙A (𝐵+

𝑐
→ 𝐵

+

𝑢
𝜂
𝑠
) ,

A (𝐵
+

𝑐
→ 𝐵

+

𝑢
𝜂


)

= sin𝜙A (𝐵+
𝑐
→ 𝐵

+

𝑢
𝜂
𝑞
) + cos𝜙A (𝐵+

𝑐
→ 𝐵

+

𝑢
𝜂
𝑠
) .

(A.1)
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