214 research outputs found

    Clinical value of M1 macrophage-related genes identification in bladder urothelial carcinoma and in vitro validation

    Get PDF
    Background: Tumor microenvironment (TME) takes a non-negligible role in the progression and metastasis of bladder urothelial carcinoma (BLCA) and tumor development could be inhibited by macrophage M1 in TME. The role of macrophage M1-related genes in BLCA adjuvant therapy has not been studied well. Methods: CIBERSOR algorithm was applied for identification tumor-infiltrating immune cells (TICs) subtypes of subjects from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data sets. We identified potential modules of M1 macrophages by weighted gene co-expression network analysis (WGCNA). Nomogram was determined by one-way Cox regression and lasso regression analysis for M1 macrophage genes. The data from GEO are taken to verify the models externally. Kaplan-Meier and receiver operating characteristic (ROC) curves validated prognostic value of M1 macrophage genes. Finally, we divided patients into the low-risk group (LRG) and the high-risk group (HRG) based on the median risk score (RS), and the predictive value of RS in patients with BLCA immunotherapy and chemotherapy was investigated. Bladder cancer (T24, 5637, and BIU-87) and bladder uroepithelial cell line (SV-HUC-1) were used for in vitro validation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to validate the associated genes mRNA level. Results: 111 macrophage M1-related genes were identified using WGCNA. RS model containing three prognostically significant M1 macrophage-associated genes (FBXO6, OAS1, and TMEM229B) was formed by multiple Cox analysis, and a polygenic risk model and a comprehensive prognostic line plot was developed. The calibration curve clarified RS was a good predictor of prognosis. Patients in the LRG were more suitable for programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte associate protein-4 (CTLA4) combination immunotherapy. Finally, chemotherapeutic drug models showed patients in the LRG were more sensitive to gemcitabine and mitomycin. RT-qPCR result elucidated the upregulation of FBXO6, TMEM229B, and downregulation of OAS1 in BLCA cell lines. Conclusion: A predictive model based on M1 macrophage-related genes can help guide us in the treatment of BLCA

    Dynamic response mechanism of initial failure of coal mass induced by in-situ stress in an outburst inoculation process of the working face for coal mining

    Get PDF
    There is still a great challenge to reveal the micro-macro dynamic mechanical behavior of initial coal failure induced by mining stress field in working face as a necessary condition for the outburst occurrence. The multivariate stress loading paths for the damage and instability of mining coal were constructed based on the typical coal and gas outburst accident of mining face. PFC3D discrete software was used to carry out the visual simulation of damage and instability of coal under multiple working conditions and scales. The dynamic response law of damage and instability of mining coal was revealed, the dynamic evolution behavior of cracks in mining coal was clarified, and the prospect of outburst prevention technologies was put forward based on the initial failure process of coal induced by in-situ stress under mining. The results shown that the failure type and strength of the mined coal varied significantly with the loading and unloading rate of the principal stress. In the process of gradual unloading of stress, the macroscopic fracture surface of coal presented the form of single inclined plane or conjugate shear plane, and the failure strength of coal decreased with the increase of unloading rate. With the gradual loading in both directions of stress at the same rate, unidirectional sudden unloading or a certain residual stress maintaining state presented a macro fracture surface parallel to the direction of the intermediate principal stress. And the failure strength of coal decreased with the increase of the unloading degree or the decrease of the residual stress. Under different stress loaded, the tension-shear failure process of coal appeared successively with shear and tension cracks. In the process of instability caused by mining coal damage, the dynamic evolution of cracks presented intermittent, progressive and paroxysmal composite characteristics. The overall development process of cracks can be characterized as the initial appearance of new cracks (intermittent-sudden increase stage), crack expansion (gradual-slow increase stage), penetration and expansion (paroxysmal-slow increase stage), and the overall tearing process of coal (sudden increase stage). The mechanical strength of coal was regarded as one of the main controlling factors affecting the occurrence of outbursts. The difficulty of initial failure of coal induced by in-situ stress depended critically on the stress loading and unloading path. The coal was most prone to initial failure when the unidirectional principal stress was suddenly unloaded or the bidirectional principal stress was gradually unloaded. Based on this mechanical law, the “ideal mining mode of outburst prediction in mining working face” was proposed to represent the most dangerous state of coal in the working face

    Distributions and Physical Properties of Molecular Clouds in the Third Galactic Quadrant: ll = [219.75, 229.75]^\circ and bb = [-5.25, 5.25]^\circ

    Full text link
    We present the results of an unbiased 12^{12}CO/13^{13}CO/C18^{18}O (JJ = 1-0) survey in a portion of the third Galactic quadrant (TGQ): ll = [219.75, 229.75]^\circ and bb = [-5.25, 5.25]^\circ. The high-resolution and high-sensitivity data sets help to unravel the distributions and physical properties of the molecular clouds (MCs) in the mapped area. In the LSR velocity range from -1 to 85 km/s, the molecular material successfully traces the Local, Perseus, and Outer arms. In the TGQ, the Outer arm appears to be more prominent than that in the second Galactic quadrant (SGQ), but the Perseus arm is not as conspicuous as that in the SGQ. A total of 1,502 12^{12}CO, 570 13^{13}CO, and 53 C18^{18}O molecular structures are identified, spanning over 2\sim2 and 6\sim6 orders of magnitude in size and mass, respectively. Tight mass-radius correlations and virial parameter-mass anticorrelations are observable. Yet, it seems that no clear correlations between velocity dispersion and effective radius can be found over the full dynamic range. The vertical distribution of the MCs renders evident pictures of the Galactic warp and flare.Comment: 22 pages, 13 figures, 7 tables (with machine-readable versions), published in ApJ

    A new treatment for neurogenic inflammation caused by EV71 with CR2-targeted complement inhibitor

    Get PDF
    BACKGROUND: Enterovirus 71 (EV71), one of the most important neurotropic EVs, has caused death and long-term neurological sequelae in hundreds of thousands of young children in the Asia-Pacific region in the past decade. The neurological diseases are attributed to infection by EV71 inducing an extensive peripheral and central nervous system (CNS) inflammatory response with abnormal cytokine production and lymphocyte depletion induced by EV71 infection. In the absence of specific antiviral agents or vaccines, an effective immunosuppressive strategy would be valuable to alleviate the severity of the local inflammation induced by EV71 infection. PRESENTATION OF THE HYPOTHESIS: The complement system plays a pivotal role in the inflammatory response. Inappropriate or excessive activation of the complement system results in a severe inflammatory reaction or numerous pathological injuries. Previous studies have revealed that EV71 infection can induce complement activation and an inflammatory response of the CNS. CR2-targeted complement inhibition has been proved to be a potential therapeutic strategy for many diseases, such as influenza virus-induced lung tissue injury, postischemic cerebral injury and spinal cord injury. In this paper, a mouse model is proposed to test whether a recombinant fusion protein consisting of CR2 and a region of Crry (CR2-Crry) is able to specifically inhibit the local complement activation induced by EV71 infection, and to observe whether this treatment strategy can alleviate or even cure the neurogenic inflammation. TESTING THE HYPOTHESIS: CR2-Crry is expressed in CHO cells, and its biological activity is determined by complement inhibition assays. 7-day-old ICR mice are inoculated intracranially with EV71 to duplicate the neurological symptoms. The mice are then divided into two groups, in one of which the mice are treated with CR2-Crry targeted complement inhibitor, and in the other with phosphate-buffered saline. A group of mice deficient in complement C3, the breakdown products of which bind to CR2, are also infected with EV71 virus. The potential bioavailability and efficacy of the targeted complement inhibitor are evaluated by histology, immunofluorescence staining and radiolabeling. IMPLICATIONS OF THE HYPOTHESIS: CR2-Crry-mediated targeting complement inhibition will alleviate the local inflammation and provide an effective treatment for the severe neurological diseases associated with EV71 infection

    Characterization and Genomic Analysis of SFPH2, a Novel T7virus Infecting Shigella

    Get PDF
    Shigellosis, caused by Shigella, is a major global health concern, with nearly 164.7 million cases and over a million deaths occurring annually worldwide. Shigella flexneri is one of the most common subgroups of Shigella with a high incidence of multidrug-resistance. The phage therapy approach is an effective method for controlling multidrug-resistant bacteria. However, only a few Shigella phages have been described to date. In this study, a novel lytic bacteriophage SFPH2 was isolated from a sewage sample obtained from a hospital in Beijing, China, using a multidrug-resistant S. flexneri 2a strain (SF2) isolated from the fecal sample of a dysentery patient. SFPH2 is a member of the Podoviridae virus family with an icosahedral capsid and a short, non-contractile tail. It was found to be stable over a wide range of temperatures (4–50°C) and pH values (pH 3–11). Moreover, SFPH2 could infect two other S. flexneri serotypes (serotypes 2 variant and Y). High-throughput sequencing revealed that SFPH2 has a linear double-stranded DNA genome of 40,387 bp with 50 open reading frames. No tRNA genes were identified in the genome. Comparative analysis of the genome revealed that the SFPH2 belongs to the subfamily Autographivirinae and genus T7virus. The genome shows high similarity with other enterobacterial T7virus bacteriophages such as Citrobacter phage SH4 (95% identity and 89% coverage) and Cronobacter phage Dev2 (94% identity and 92% coverage). A comparison of the fiber proteins showed that minor differences in the amino acid residues might specify different protein binding regions and determine host species. In conclusion, this is the first report of a T7virus that can infect Shigella; SFPH2 has a functional stability under a wide range of temperatures and pH values, showing the potential to be widely applied to control Shigella–associated clinical infections and reduce the transmission rates of S. flexneri serotype 2a and its variants in the environment

    Clinical M2 Macrophage-Related Genes Can Serve as a Reliable Predictor of Lung Adenocarcinoma

    Get PDF
    BackgroundNumerous studies have found that infiltrating M2 macrophages play an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of M2 macrophage infiltration and M2 macrophage-related genes in immunotherapy and clinical outcomes remain obscure.MethodsSample information was extracted from TCGA and GEO databases. The TIME landscape was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to find M2 macrophage-related gene modules. Through univariate Cox regression, lasso regression analysis, and multivariate Cox regression, the genes strongly associated with the prognosis of LUAD were screened out. Risk score (RS) was calculated, and all samples were divided into high-risk group (HRG) and low-risk group (LRG) according to the median RS. External validation of RS was performed using GSE68571 data information. Prognostic nomogram based on risk signatures and other clinical information were constructed and validated with calibration curves. Potential associations of tumor mutational burden (TMB) and risk signatures were analyzed. Finally, the potential association of risk signatures with chemotherapy efficacy was investigated using the pRRophetic algorithm.ResultsBased on 504 samples extracted from TCGA database, 183 core genes were identified using WGCNA. Through a series of screening, two M2 macrophage-related genes (GRIA1 and CLEC3B) strongly correlated with LUAD prognosis were finally selected. RS was calculated, and prognostic risk nomogram including gender, age, T, N, M stage, clinical stage, and RS were constructed. The calibration curve shows that our constructed model has good performance. HRG patients were suitable for new ICI immunotherapy, while LRG was more suitable for CTLA4-immunosuppressive therapy alone. The half-maximal inhibitory concentrations (IC50) of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG.ConclusionsIn conclusion, a comprehensive analysis of the role of M2 macrophages in tumor progression will help predict prognosis and facilitate the advancement of therapeutic techniques
    corecore