10,185 research outputs found

    Influence of Superabsorbent Polymers on Properties of High-Performance Concrete with Active Supplementary Cementitious Materials of Nigeria

    Get PDF
    Concrete of strengths classes ≥ C55/67 referred to as high strength or highperformance concrete (HSC/HPC) are noted to be generally of low water/binder (W/B), made from binary or ternary cements with silica fume (SF) being a necessary constituent, and often requiring internal curing. Non-availability and high cost of SF in most sub-Saharan Africa like Nigeria however makes HSC/HPC production in this region very difficult and hence the continued search for alternative supplementary cementitious materials (SCM) with good performance properties as constituents of ternary/binary cements in HPC. This study thereby examines the strength properties of metastable calcined clay (MCC) based HPC cured internally with superabsorbent polymer (SAP) 0.2–0.3% (by weight of binder (bwob)). HPC mixtures of varied MCC and Rice husk ash (RHA) contents containing two SAP grain sizes labelled (SP1 ˂ 300 μm and SP2 ˂ 600 μm) were cast in 100 mm cubes and cured for varying ages (7, 14, 28 and 56 days) before testing. The hardened specimens were subjected to compressive strength and water absorption tests at the varied curing ages for the performance assessment of the binder types and SAP grain sizes in HPC with age. This study revealed the possibility of achieving Class 1 HPC (50–75 N/mm2) utilizing industry manufactured calcined clay and locally produced RHA in Nigeria. The compressive strength of HPCs increased as the curing age increases for both SCM type, SAP contents and grain sizes. RHA based HPCs however showed better strength performance at the early ages than the MCC based. SAP addition in MCC based HPCs led to slight decrease in compressive strength as the SAP contents increased while the RHA based HPCs on the other hand, revealed slight increase in compressive strength with increase in SAP contents

    Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation

    Full text link
    © 2017 Elsevier Ltd In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    An integrated approach to determine left atrial volume, mass and function in hypertrophic cardiomyopathy by two-dimensional echocardiography

    Get PDF
    Methods: The study included 25 hypertrophic cardiomyopathy (HCM) patients (15 non-obstructive and 10 obstructive) and 25 controls for assessment of left atrial (LA) volume, mass and function by two-dimensional echocardiography. Measurement included mean LA diameter (LAD), LA mass = {(mean LAD + anterior LA wall + posterior LA wall)3- mean LAD3} × 0.8 + 0.6, LA volume = [(8/3 φ L ̇ A1 ̇ A2), where L is LA length, A1 and A2 are LA area in 4-chambers and 2-chambers, respectively] including maximum (Vmax), minimum (Vmin), and pre-atrial contraction (Vpre-A), total atrial stroke volume (TA-SV), TA emptying fraction (TA-EF), active atrial SV (AA-SV), AA-EF, passive atrial SV (PA-SV), PA-EF, atrial expansion index (AEI), and LA kinetic energy (LA-KE) = 1/2 × AA-SV × P × V2. Results: LAD, LA mass, Vmax, Vmin, and Vpre-Awere significantly higher in HCM than controls. TA-SV and TA-EF were comparable in both HCM subgroups and controls. AA-SV and LA-KE were significantly higher in both HCM subgroups than controls. LA-KE was significantly higher in obstructive HCM than non-obstructive (P < 0.001). PA-EF and AEI were significantly lower in obstructive HCM than controls (P < 0.05). Conclusion: HCM is associated with increased LA size and augmented LA pump function especially obstructive type. LA conduit and reservoir functions are impaired in obstructive HCM

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    On Bayesian Search for the Feasible Space Under Computationally Expensive Constraints

    Get PDF
    We are often interested in identifying the feasible subset of a decision space under multiple constraints to permit effective design exploration. If determining feasibility required computationally expensive simulations, the cost of exploration would be prohibitive. Bayesian search is data-efficient for such problems: starting from a small dataset, the central concept is to use Bayesian models of constraints with an acquisition function to locate promising solutions that may improve predictions of feasibility when the dataset is augmented. At the end of this sequential active learning approach with a limited number of expensive evaluations, the models can accurately predict the feasibility of any solution obviating the need for full simulations. In this paper, we propose a novel acquisition function that combines the probability that a solution lies at the boundary between feasible and infeasible spaces (representing exploitation) and the entropy in predictions (representing exploration). Experiments confirmed the efficacy of the proposed function

    Social Algorithms

    Full text link
    This article concerns the review of a special class of swarm intelligence based algorithms for solving optimization problems and these algorithms can be referred to as social algorithms. Social algorithms use multiple agents and the social interactions to design rules for algorithms so as to mimic certain successful characteristics of the social/biological systems such as ants, bees, bats, birds and animals.Comment: Encyclopedia of Complexity and Systems Science, 201

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    A Convolutional Approach to Vertebrae Detection and Labelling in Whole Spine MRI

    Full text link
    We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs. This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies and convolutional image-to-image translation followed by beam search to label vertebral levels in a self-consistent manner. The method can be applied without modification to lumbar, cervical and thoracic-only scans across a range of different MR sequences. The resulting system achieves 98.1% detection rate and 96.5% identification rate on a challenging clinical dataset of whole spine scans and matches or exceeds the performance of previous systems on lumbar-only scans. Finally, we demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.Comment: Accepted full paper to Medical Image Computing and Computer Assisted Intervention 2020. 11 pages plus appendi
    corecore