84,232 research outputs found
Domain wall propagation due to the synchronization with circularly polarized microwaves
Finding a new control parameter for magnetic domain wall (DW) motion in
magnetic nanostructures is important in general and in particular for the
spintronics applications. Here, we show that a circularly polarized magnetic
field (CPMF) at GHz frequency (microwave) can efficiently drive a DW to
propagate along a magnetic nanowire. Two motion modes are identified: rigid-DW
propagation at low frequency and oscillatory propagation at high frequency.
Moreover, DW motion under a CPMF is equivalent to the DW motion under a uniform
spin current in the current perpendicular to the plane magnetic configuration
proposed recently by Khvalkovskiy et al. [Phys. Rev. Lett. 102, 067206 (2009)],
and the CPMF frequency plays the role of the current
Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2–7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS
Regional mapping of the crustal structure in southern California from receiver functions
Lateral variations of the crustal structure in southern California are determined from receiver function (RF) studies using data from the Southern California Seismic Network broadband stations and Los Angeles Regional Seismic Experiment surveys. The results include crustal thickness estimates at the stations themselves, and where possible, cross sections are drawn. The large-scale Moho depth variation pattern generally correlates well with the current status of the Mesozoic batholith: Deep Moho of 35–39 km is observed beneath the western Peninsula Ranges, Sierra Nevada, and San Bernardino Mountains, where the batholith is relatively intact, and shallow Moho of 26–32 km is observed in the Mojave Desert, where the batholith is highly deformed and disrupted. High-resolution lateral variations of the crustal structure for individual geographic provinces are investigated, and distinctive features are identified. The crustal structure is strongly heterogeneous beneath the central Transverse Ranges, and deep Moho of 36–39 km is locally observed beneath several station groups in the western San Gabriel Mountains. Moho is relatively flat and smooth beneath the western Mojave Desert but gets shallower and complicated to the east. Anomalous RFs are observed at two stations in the eastern Mojave Desert, where a Moho step of ∼8–10 km is found between the NW and SE back-azimuthal groups of station DAN in the Fenner Valley. Asymmetric extension of the Salton Trough is inferred from the Moho geometry. Depth extension of several major faults, such as the San Andreas Fault and San Gabriel Fault, to the Moho is inferred
Stellar Metallicity Gradients in SDSS galaxies
We infer stellar metallicity and abundance ratio gradients for a sample of
red galaxies in the Sloan Digital Sky Survey (SDSS) Main galaxy sample. Because
this sample does not have multiple spectra at various radii in a single galaxy,
we measure these gradients statistically. We separate galaxies into stellar
mass bins, stack their spectra in redshift bins, and calculate the measured
absorption line indices in projected annuli by differencing spectra in
neighboring redshift bins. After determining the line indices, we use stellar
population modeling from the EZ\_Ages software to calculate ages,
metallicities, and abundance ratios within each annulus. Our data covers the
central regions of these galaxies, out to slightly higher than . We
find detectable gradients in metallicity and relatively shallow gradients in
abundance ratios, similar to results found for direct measurements of
individual galaxies. The gradients are only weakly dependent on stellar mass,
and this dependence is well-correlated with the change of with mass.
Based on this data, we report mean equivalent widths, metallicities, and
abundance ratios as a function of mass and velocity dispersion for SDSS
early-type galaxies, for fixed apertures of 2.5 kpc and of 0.5 .Comment: 19 pages; 8 tables, 12 figures. Submitted to ApJ for publicatio
- …