Effects of Inhibiting Antioxidant Pathways on Cellular Hydrogen Sulfide and Polysulfide Metabolism

Kenneth R. Olson^{a,b} and Yan Gao^a

a. Indiana University School of Medicine - South Bend Center, South Bend, Indiana 46617 USA

b. Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556

Running Head: Antioxidant Inhibitors and RSS Metabolism

Address correspondence to:

Kenneth R. Olson, Ph.D.

Indiana University School of Medicine -South Bend

Raclin Carmichael Hall

1234 Notre Dame Avenue

South Bend, IN 46617

Phone: (574) 631-7560

Fax: (574) 631-7821

e-mail: olson.1@nd.edu

This is the author's manuscript of the article published in final edited form as:

1 2

ABSTRACT

3	Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen
4	species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally
5	similar to reactive sulfide species (RSS) and both ROS and RSS have been shown to be
6	metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use
7	fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on
8	metabolism of two important RSS, hydrogen sulfide (H ₂ S with AzMC) and polysulfides (H ₂ S _n ,
9	where n=2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in
10	normoxia (21% O_2) and hypoxia (5% O_2), conditions also known to affect ROS production.
11	Decreasing intracellular glutathione (GSH) with L-buthionine-sulfoximine (BSO) or diethyl
12	maleate (DEM) decreased H_2S production for 5 days but did not affect H_2S_n . The glutathione
13	reductase inhibitor, auranofin, initially decreased H_2S and H_2S_n but after two days H_2S_n
14	increased over controls. Inhibition of peroxired oxins with conoidin A decreased H_2S and
15	increased H_2S_n , whereas the glutathione peroxidase inhibitor, tiopronin, increased H_2S .
16	Aminoadipic acid, an inhibitor of cystine uptake did not affect either H_2S or H_2S_n . In buffer, the
17	glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase
18	mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with
19	H ₂ S and H ₂ S ₂ , or optically interfered with AzMC or SSP4 fluorescence. Collectively these
20	results show that antioxidant inhibitors, generally known for their ability to increase cellular
21	ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect
22	cellular sulfur metabolism pathways that are not related to ROS production and in some
23	instances they may directly affect RSS or the methods used to measure them. They also

- 24 illustrate the importance of carefully evaluating RSS metabolism when biologically or
- 25 pharmacologically attempting to manipulate ROS.
- 26
- 27 Key Words: reactive sulfide species; reactive oxygen species; antioxidants
- 28

29 **1. Introduction**

30	It is becoming more apparent that redox environments in various intracellular
31	compartments are physiologically regulated to optimize electron transfer and prevent electrons
32	from 'wandering off' and disrupting cellular processes. Although, numerous oxidants can arise
33	from a variety of intracellular processes, or be ingested in the diet, the production of reactive
34	oxygen species (ROS), namely peroxide (H ₂ O ₂) has received the most attention as it has been
35	implicated a variety of aspects of oxidative stresses from signaling (eustress) to mobilization of
36	antioxidant responses (oxidative stress), and if this fails the resulting oxidative distress can lead
37	to catastrophic consequences [1-19].
38	Regulation of, and protection from ROS is attributed to a hierarchy of antioxidant
39	mechanisms that include ROS buffers and a compliment of enzymes that facilitate transfer of
40	electrons from NADPH to the oxidant or oxidized cellular constituent, the latter often a thiol on a
41	regulatory or structural protein. Thiols are also the redox currency of the major intracellular
42	redox buffer, glutathione, and the cadre of redox enzymes, peroxiredoxins, thioredoxins,
43	thioredoxin reductases, glutaredoxins and glutathione reductases employed to maintain this
44	balance. Chemically targeting these antioxidant systems has been used to examine their relative
45	regulatory roles as well as to disrupt redox balance as a therapeutic tool [20-31].
46	We have noted striking similarities between ROS and reactive sulfide species (RSS) and
47	have proposed that in some instances the former could be mistaken for the latter in cellular
48	functions [32]. Sequential one-electron reductions of O_2 produces superoxide(O_2^{\bullet}), hydrogen
49	peroxide (H ₂ O ₂), hydroxyl radical (HO [•]) and H ₂ O, whereas one-electron oxidation of hydrogen
50	sulfide (H ₂ S) progressively forms a thiyl radical (HS ^{\cdot}), hydrogen persulfide (H ₂ S ₂) and persulfide
51	"supersulfide" radical (HS $_2$) before terminating in elemental sulfur (S $_2$), the latter usually

52	cyclizing to S_8 . The primary target of both peroxide and persulfide is the above-mentioned
53	cysteine on regulatory proteins and the effects of peroxidation or persulfidation on the function
54	of a number of proteins has been shown to be identical [17,33-40]. Furthermore, many methods
55	routinely employed to measure ROS also detect RSS, at times with greater sensitivity [41].
56	Although the "Redox Code" posits that concept of antioxidant protection was believed to
57	be "richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving
58	O_2 and H_2O_2 contribute to spatiotemporal organization for differentiation, development, and
59	adaptation to the environment" [42], an argument can be made for antioxidants in the regulation
60	of RSS. Essentially all antioxidant buffers and above-mentioned enzymes appeared within the
61	first several hundred million years after life's beginnings 3.8 billion years ago [43-51]. At this
62	time the oceans were anoxic and sulfidic [52,53] and it would take over a billion years for the
63	"great oxidation event" to slightly nudge atmospheric O ₂ . It wasn't until 600 million years ago,
64	after nearly seven-eighths of evolution had passed, before the oceans became oxic. As the
65	origins of antioxidant mechanisms likely coincided with the advent of anoxygenic
66	photosynthesis, a process that has been proposed to oxidize H_2S to polysulfides and reduce CO_2
67	to methane and other organic compounds [32] it would seem that control of sulfur-based redox
68	reactions would have been a priority, perhaps not only for redox balance but for general
69	metabolism. We proposed that many of these pathways remain in extant animals and perform
70	similar functions.
71	We recently examined the possibility that sulfur was metabolized by two antioxidant
72	enzymes, superoxide dismutase (SOD) and catalase, and indeed this appeared to be the case.

persulfide (H_2S_2) and subsequently longer chain polysulfides $(H_2S_n \text{ where } n=3-5)$ but did not

Both Cu/Zn and Mn SOD oxygen-dependently oxidized H_2S to polysulfides, initially forming

73

75	metabolize polysulfides [54]. Bovine catalase also oxidized H ₂ S to polysulfides in the presence
76	of either O_2 or H_2O_2 , whereas in hypoxia it produced H_2S from either thioredoxin or the sulfur-
77	reductant dithiothreitol (DTT), a process that required NADPH [55]. Furthermore, the partial
78	pressure of oxygen at which the catalase switched from an oxidase to a reductase (P_{50}) which is
79	20 mmHg, is striking similar to the P_{50} of the oxyhemoglobin saturation curve (26 mmHg)
80	suggesting that catalase, which is abundant in red blood cells, oxidizes H ₂ S during normoxia,
81	whereas as blood Po_2 falls, not only is O_2 unloaded from hemoglobin, but vasodilator H_2S is
82	produced to augment O ₂ delivery.
83	In the present study we further examine sulfur (RSS) metabolism in HEK293 cells by
84	blocking endogenous antioxidant pathways while monitoring endogenous H_2S and polysulfides
85	with specific fluorophores (AzMC and SSP4, respectively). We show that these antioxidant
86	inhibitors have profound effects on cellular RSS that are not consistent with concomitant effects
87	on ROS and propose that some of the effects of manipulating cellular antioxidant pathways may
88	be mediated by RSS.
89	
90	2. Materials and methods
91	2.1. Chemicals
92	SSP4 (3', 6'-Di(O-thiosalicyl)fluorescein) was purchased from Dojindo molecular
93	Technologies Inc. (Rockville, MD). All other chemicals were purchased either from Sigma-
94	Aldrich (St. Louis, MO) or ThermoFisher Scientific (Grand Island, NY). Please note that we use
95	H_2S to denote the total sulfide added (sum of $H_2S + HS^-$) usually derived from Na ₂ S. Also,
96	while S^{2-} is often thought as part of the $H_2S + HS^-$ equilibrium, it does not exist under

- physiological conditions [56]. Phosphate buffer (PBS; in mM): 137 NaCl, 2.7, KCl, 8 Na₂HPO₄,
 2 NaH₂PO₄. pH was adjusted with 10 mM HCl or NaOH to 7.4.
- 99

100 2.2. Effects of inhibitors on sulfur metabolism in cells

101	Human embryonic kidney (HEK293) cells were cultured and maintained at 37° C in a 5%
102	CO_2 humidified incubator with 21% O_2 supplemented with DMEM (low glucose) containing
103	10% FBS and 1% Pen/Strep. In a typical experiment they were transferred from a T-25 tissue
104	culture flask to two 96 well plates with gas-permeable bottoms (Coy Laboratory Products, Inc.
105	grass Lake, MI) and grown to 80–95% confluency. The cells were then treated with either an
106	H_2S sensitive fluorophore 7-azido-3-methylcoumarin (AzMC, 25 μ M) or a polysulfide sensitive
107	fluorophore 3',6'-Di(O-thiosalicyl)fluorescein (SSP4, 10 µM). Excitation/emission wavelengths
108	for AzMC and SSP4 were 365/450 and 482/515, respectively per manufacture's
109	recommendations. Fluorescence was measured on a SpectraMax M5e plate reader (Molecular
110	Devices, Sunnyvale, CA) according to the manufacturer's recommendations Inhibitors of H_2S
111	biosynthesis or sulfur doors were typically added after an initial baseline reading and one plate
112	was returned to the 21% O_2 incubator (normoxia) and the other placed in a model 856-HYPO
113	hypoxia chamber (Plas Labs, Inc. Lansing, MI) and incubated in 5% $O_2/5\%\ CO_2$ balance N_2
114	(hypoxia) at 37° C for 3-5 days. Previous studies have shown that this prolonged hypoxia
115	produces a sustained increase in cellular H_2S and these studies were designed to determine if any
116	inhibitors specifically affected the hypoxic response.
117	

118

2.3. Effects of inhibitors on fluorescence and sulfur metabolism in buffer

119	The inhibitors used in this study could give an erroneous impression of an effect on
120	cellular sulfur metabolism if they directly interacted with AzMc and SSP4 or H_2S and
121	polysulfides. Three groups of experiments were performed to examine these possibilities. In the
122	first group, the inhibitors were added directly to the fluorophores to determine if they specifically
123	activated the fluorophores. In the second group, the inhibitors were added to concomitantly with
124	$200 \ \mu M \ H_2S$ and either AzMC or SSP4. A decrease in AzMC fluorescence would suggest that
125	either the inhibitors catalyzed H_2S consumption or there was a direct interference of the reaction
126	between H ₂ S and AzMC. An increase in SSP4 fluorescence in these experiments would suggest
127	that the inhibitors catalyzed the oxidation of H_2S to polysulfides. In the third group of
128	experiments 10 μ M of H ₂ S was incubated with AzMC, or 30 μ M of K ₂ S _n was incubated with
129	SSP4 for 120 min to determine if the inhibitors interfered with fluorescence of AzMC or SSP4
130	after the fluorophores were activated by the sulfur moiety. In these experiments the H_2S and
131	K_2S_n concentrations were chosen to produce approximately the same fluoresence as that
132	observed in the cell experiments and 120 min allowed for the fluorophore-sulfur reaction to be
133	completed.
134	The compounds of interest were aliquoted into black 96 well plates in a darkened room
135	and fluorescence was measured on a SpectraMax M5e plate reader (Molecular Devices,
136	Sunnyvale, CA). Fluorescence was typically measured every 10 min over 90 min. The inhibitor
137	concentrations were selected to bracket the concentrations used in the cell experiments. All
138	experiments were performed at room temperature (20° C).

139

140 2.4. Cell viability

141	Cell viability was determined using the PrestoBlue fluorophore per manufacturer's
142	directions. PrestoBlue was either added at the end of an experiment or to PBS and fluorescence
143	measured 1 and 2 h later at 535/615 nm (Ex/Em).
144	
145	2.5. Verification of AzMC specificity
146	An anonymous reviewer expressed some concern regarding the specificity of AzMC as a
147	H_2S fluorophore. To examine this we first examined the effects of GSH, -3MP, H_2O_2 and the
148	NO donor sodium nitroprusside on AzMC fluorescence in PBS. We then incubated HEK293
149	cells with inhibitors of H_2S biosynthesis, propargylglycine (PPG; 10 mM) and 1 mM
150	aminooxyacetate (AOA; 1 mM). PPG is a relatively selective inhibitor of cystathionine γ lyase
151	and AOA is an inhibitor of both CSE and cystathionine β -synthase (CBS).
152	
153	2.6. Calculations
154	Results are expressed as mean +SE. Statistical analysis was determined by one-way
155	ANOVA with Holm-Sidak for multiple comparisons. Significance was assumed at $p \leq 0.05$.
156	
157	3. Results
158	3.1. Effects of BSO and DEM on intracellular H_2S and polysulfides in HEK293 cells
159	Both L-buthionine-sulfoximine (BSO) and diethyl maleate (DEM) decreased intracellular
160	GSH and increased ROS in primary cortical cultures containing both neurons and astrocytes
161	[57]. The concentration-dependent effects of BSO and DEM on H_2S (AzMC fluorescence) in
162	both normoxic (21% O_2) and hypoxic (5% O_2) HEK293 cells are shown in Fig. 1 . Although the
163	BSO-hypoxia control cells were lost due to medium leaking from the wells, there was a clear

164	decrease in AzMC fluorescence between 0.3 µM BSO and 1 µM BSO supporting the conclusion
165	that both BSO and DEM concentration-dependently decreased AzMC fluorescence in normoxic
166	and hypoxic cells. The effects of BSO and DEM on polysulfides (SSP4 fluorescence) in
167	HEK293 cells in hypoxia (5% O_2) are also shown in Fig. 1 . Neither BSO nor DEM greatly
168	affected SSP4 fluorescence, the rapid initial increase in SSP4 fluorescence in all samples likely
169	reflects a large pre-existing polysulfide pool in these cells and may have masked specific effects
170	of the inhibitors.
171	In order to determine if the effects of BSO or DEM were on cellular H_2S and polysulfides
172	we then explored potential interactions of the inhibitors with fluorophores in buffer (Figs. S1,
173	S2, respectively). Neither BSO nor DEM directly reacted with otherwise unactivated
174	fluorophore, nor did they affect the reaction of the fluorophores with H_2S or with H_2S -activated
175	AzMC or K_2S_n -activated SSP4. These results suggest that both BSO and DEM directly inhibit
176	intracellular H ₂ S production but do not affect endogenous polysulfides or polysulfide production.
177	
178	3.2. Effects of cystine, BSO and DEM on H_2S and polysulfide metabolism in HEK293 cells
179	Although both BSO and DEM decrease intracellular GSH and increase ROS, DEM
180	increases cystine uptake while BSO decreases it [57]. In order to determine if cystine affected
181	the actions of these inhibitors on cellular sulfur metabolism we incubated HEK293 cells with
182	combinations of 200 µM cystine, 10 µM BSO and 100 µM DEM (Fig. 2). Cystine decreased
183	intracellular H_2S , but it was less than half as effective as either BSO or DEM and the effects of
184	either BSO or DEM were not affected by addition of cystine. SSP4 fluorescence was unaffected
185	by cysteine, BSO, DEM, or by combinations of cystine and BSO or cystine and DEM. These

186	results suggest that the effects of BSO and DEM on intracellular H_2S metabolism are
187	independent of cystine uptake and not related to their effects on intracellular ROS.
188	Figure 2 also shows that cystine alone decreases AzMC but does not affect SSP4
189	fluorescence in HEK293 cells. Cystine also had direct effects on the fluorophores in buffer but
190	these were opposite of those produced in cells (Fig. S3). Cystine slightly increased fluorescence
191	of both AzMC and SSP4 alone and it concentration-dependently increased SSP4 fluorescence
192	when added in conjunction with H_2S . Cystine produced approximately a 20% increase in AzMC
193	fluorescence when added 120 min after AzMC but this was not dependent on cysteine
194	concentration; cystine did not affect fluorescence of SSP4 pre-incubated with K_2S_n (Fig. S4).
195	The effects of cystine on cellular polysulfides remain to be clarified.
196	
197	3.3. Effects of auranofin on intracellular H_2S and polysulfides in HEK293 cells
198	Auranofin is an irreversible inhibitor of glutathione reductase (GSHR) and increases
199	intracellular ROS [27,28,58,59]. The concentration-dependent effects of auranofin on sulfur
200	metabolism are shown in Fig. 3. Auranofin concentration-dependently decreased the time
201	dependent rate of both AzMC and SSP4 fluorescence increase in normoxic and hypoxic cells.
202	The effects of auranofin in buffer are shown in Fig. S5. In buffer, auranofin did not
203	directly react with otherwise unactivated fluorophore nor did it affect the reaction of AzMC with
204	H_2S . However, auranofin decreased SSP4 fluorescence in the presence of H_2S but not in the
205	presence of H_2S -activated AzMC or K_2S_n -activated SSP4. The concentration-dependent
206	decrease in SSP4 fluorescence produced by auranofin in HEK293 cells was evident at the initial
207	4 hr sample and the rate of increase in SSP4 fluorescence thereafter was not appreciably different

- between the un-treated and auranofin-treated samples suggesting that the anurafin effects wereindirect.
- 210

211 3.4. Effects of combined auranofin and BSO or DEM treatment on H_2S and polysulfide

212 metabolism in HEK293 cells

213 The combined effects of 10 µM BSO, 100 µM DEM and either 3 or 10 µM auranofin are shown in Fig. 4. In these experiments the inhibitors were added to the cells on the first day, 214 215 whereas the fluorophores were added to different groups of cells on day 1, 2, 3 and 4. This 216 combination of inhibitors nearly completely inhibited H₂S production when applied on the first 217 day and this level of inhibition remained for the duration of the experiment. Polysulfide 218 production was not appreciably affected with 3 µM auranofin when the SSP4 was given on the 219 first day but was decreased with 10 µM auranofin. However, the degree of inhibition of SSP4 220 fluorescence appeared to progressively wane when the SSP4 was given after day one and by 221 days 2-3 SSP4 fluorescence was greater in auranofin-treated cells. These effects on AzMC 222 fluorescence are consistent with the individual effects of the inhibitors whereas there appears to 223 be cellular over-compensation in polysulfide metabolism. This compensation required auranofin 224 as it was not observed with either BSO or DEM when these experiments were repeated in the 225 absence of auranofin (not shown).

226

227 3.5. Effects of conoidin A on H₂S and polysulfide metabolism in HEK293 cells

Conoidin A covalently binds and inhibits peroxiredoxins [60]. The effects of conoidin A
 on sulfur metabolism in HEK293 cells are shown in Fig. 5. Conoidin A concentration dependently decreased AzMC fluorescence and greatly increased SSP4 fluorescence in both

231	normoxic and hypoxic HEK293 cells. With 100 μ M conoidin A AzMC fluorescence was
232	severely depressed, even at t=0 h suggesting that conoidin A directly interfered with AzMC, and
233	indeed this appeared to be the case. In buffer conoidin A concentration-dependently decreased
234	AzMC fluorescence by itself, in conjunction with H ₂ S, and after H ₂ S had reacted with AzMC for
235	120 min (Fig. S6). In all instances there was an apparent threshold of 3 μ M (5% inhibition) and
236	at 100 μ M more than half of the AzMC fluorescence was inhibited. These results suggest that
237	with conoidin A concentrations above 3 μ M the effects on cellular AzMC fluorescence are
238	indirect and probably due to optical quenching. However, the inhibitory effects of 1 μ M
239	conoidin A on AzMC fluorescence in cells could be due to direct inhibition of cellular H_2S as
240	this concentration did not affect AzMC fluorescence in buffer. Conoidin A also decreased SSP4
241	fluorescence in buffer (Fig. S6), clearly the opposite of its effects in cells, indicating that
242	conoidin A directly increases intracellular polysulfides.
243	
244	3.6. Effects of tiopronin on H_2S and polysulfide metabolism in HEK293 cells
245	The effects of tiopronin, an inhibitor of cystine uptake, on AzMC and SSP4 fluorescence
246	in HEK293are shown in Fig. 6. Tiopronin concentration-dependently increased AzMC
247	fluorescence in normoxic HEK293 cells and this was further increased in hypoxic cells. For
248	example, at 21 h 1 mM tiopronin increased AzMC fluorescence 4.9-fold in hypoxic cells
249	compared to a 3.4-fold increase in normoxic cells. After 21 h AzMC fluorescence progressively
250	declined in hypoxic cells but continued to rise, albeit slowly in normoxic cells. In buffer
251	tiopronin increased AzMC fluorescence by approximately 40% (Fig. S7) but this was only 1500
252	to 2000 fluorescence units compared to the increase of over 10,000 fluorescence observed in
253	cells. When added in conjunction with H ₂ S, tiopronin decreased AzMC fluorescence (Fig. S7)

254	by 40%, but when added 120 min after AzMC and H_2S tiopronin did not inhibit fluorescence
255	between 500 μ M and 2 mM and inhibited it by only 25% at 4 mM. These results indicate that
256	topronin substantially increases intracellular H_2S and that this increase is even greater in hypoxic
257	cells.
258	SSP4 fluorescence was decreased by tiopronin in normoxia and hypoxia with the most
259	notable response in hypoxic cells treated with 1 mM tiopronin. As shown in Fig. S7, tiopronin
260	partially inhibited SSP4 fluorescence when added directly to SSP4, when added in conjunction
261	with H_2S and when added 120 min after SSP4 was incubated with K_2S_n . These results indicate
262	that tiopronin likely has little effect on intracellular polysulfides.
263	
264	3.7. Effects of ebselen on H_2S and polysulfide metabolism in HEK293 cells
265	Effects of the glutathione peroxidase and peroxiredoxin mimetic on AzMC and SSP4
266	fluorescence are shown in Fig. 7. Ebselen concentration-dependently decreased intracellular
267	AzMC fluorescence in normoxic and hypoxic HEK293 cells but had minimal effects on SSP4
268	fluorescence with the exception of a delayed increase in fluorescence. The effects of ebselen on
269	AzMC fluoresence in cells are likely indirect. As shown in Fig. S8, while ebselen did not
270	directly react with buffer, it decreased AzMC fluorescence by 70% when added concurrently
271	with H_2S but only slightly (<20%) decreased fluorescence when added 120 min after H_2S .
272	Ebselen also profoundly increased SSP4 fluorescence (600%) when added concurrently with H ₂ S
273	and SSP4 but did not affect SSP4 fluorescence when added directly to SSP4 or 120 min after
274	K_2S_n was added to SSP4. These results suggest that ebselen directly catalyzes polysulfide
275	formation from H ₂ S. Additional studies are required to clarify ebselen's effects in cells.
276	

277	3.8. Effects of 2-AAPA on H_2S and polysulfide metabolism in HEK293 cells
278	The irreversible inhibitor of glutathione reductase (GSHR) and thioredoxin reductase
279	(TrxR), 2-AAPA, concentration-dependently decreased AzMC fluorescence in normoxic and
280	hypoxic HEK293 cells (Fig. 8). 2-AAPA also increased cellular SSP4 fluorescence, which at 20
281	μ M was 3-4 times that of untreated cells. This increase was noted immediately after application
282	of 2-AAPA and it declined by ~15% within the first 4 h.
283	In buffer, 2-AAPA appeared to directly react with AzMC, increasing fluorescence by
284	approximately 40% at all concentrations (10, 20 and 40 µM; Fig. S9). But when 2-AAPA was
285	added to AzMC in the presence of 100 μ M H ₂ S it appeared to slightly decrease fluorescence but
286	this was due to variability in the initial concentrations of fluorophore (t=0 min) and not to 2-
287	AAPA; the ratio of fluorescence between H ₂ S and 10, 20 or 40 μ M 2-AAPA at t=0 min (0.74,
288	1.10 and 0.65, respectively) was not appreciably different from their ratios at 10 min (0.75, 0.99,
289	0.65) or 90 min (0.86, 0.97, 0.70). A minimal (<10%) decrease in fluorescence was also
290	observed when 2-AAPA was added 120 min after H ₂ S had reacted with AzMC. Collectively,
291	these results suggest that 2-AAPA may directly decrease intracellular H ₂ S, however this needs to
292	be confirmed.
293	The effects of 2-AAPA on intracellular SSP4 fluorescence, appears to be due to direct
294	interactions between 2-AAPA and SSP4 (Fig. S9). Direct addition of 2-AAPA to SSP4
295	produced a concentration- and time-dependent increase in fluorescence that for 10, 20 and 40 μ M
296	2-AAPA was 37, 55 and 77 times greater, respectively than SSP4 alone at 90 min. 2-AAPA also
297	increased fluorescence when SSP4 was added to H ₂ S, albeit to a lesser degree. However, 2-
298	AAPA did not affect fluorescence of SSP4 after the latter had reacted with polysulfides,
299	presumably because at this time there was little un-reacted SSP4 left. Although these results do

- not provide any direct information on intracellular polysulfide metabolism, they clearly illustrate
 the need to carefully evaluate potential interfering reactions with test compounds and
 fluorophores.
- 303

304 3.9. Effects of aminoadipic acid on H_2S and polysulfide metabolism in HEK293 cells 305 Aminoadipic acid is a competitive substrate for the system X_c transporter and decreases 306 cellular uptake of cystine. Aminoadipic acid did not affect either AzMC or SSP4 fluorescence in 307 HEK293 cells (Fig. 9). In buffer aminoadipic acid did not directly react with AzMC or SSP4, 308 but decreased AzMC (15%) and SSP4 (35%) fluorescence when incubated concurrently with 309 H₂S or after 120 min of SSP4 reaction with polysulfides (15%; Fig. S10). As there was no 310 cystine in the medium in these experiments, these results suggest that aminoadipic acid has little 311 effect on intracellular sulfur metabolism in HEK293 cells.

312

313 *3.10. Short-term effects of select inhibitors*

A number of the inhibitors used in this study had apparent effects on H_2S and polysulfide metabolism within the first 4 hours. These effects were then examined on a shorter time scale to get a better appreciation of their impact on H_2S and polysulfide metabolism.

As shown in **Fig. 10**, BSO did not appreciably affect AzMC fluorescence, whereas an inhibitory effect of 300 μ M DEM was evident within the first hour. This is as expected because BSO inhibits GSH synthesis but does not immediately react with GSH, whereas DEM directly reacts with GSH. By the first hr, 1 mM tiopronin increased H₂S. The effects of 300 μ M and 100 μ M tiopronin became evident by hrs 2 and 3, respectively. The inhibitory effects of conoidin A on AzMC fluorescence were evident even at the initial (t=0 hr) sample suggesting that these

323	were due to a direct inhibitory effect on the fluorphore which is supported by the buffer studies
324	(Fig. S6).

325 Conoidin A produced concentration-dependent increases in SSP4 fluorescence within the 326 first 15 min (**Fig. 11**). Although much of the inhibitory effect of 3 μ M auranofin appeared to be 327 indirect, as shown by the decrease in fluorescence at t=0 hr, auranofin also appeared to delay the 328 subsequent increase in fluorescence suggesting a possible inhibitory effect in the cells as well 329 (**Fig. 11**).

330

331 *3.11. PrestoBlue; effects of inhibitors and thiols*

332	The effects of antioxidant pathway inhibitors on cell viability was first examined by
333	incubating HEK293 cells in 5% O_2 with either BSO and DEM (10 and 100 μ M, respectively),
334	conoidin A (10 μ M) or tiopronin (1 mM) for 46 h in the presence of either AzMC or SSP4 then
335	adding PrestoBlue and measuring PrestoBlue fluorescence one and two hours later (47 and 48h).
336	AzMC and SSP4 fluorescence was monitored at 0, 2, 20, 24, 28 and 44 h to confirm the effects
337	of the inhibitors on H_2S and polysulfide production. The effects of the inhibitors on AzMC and
338	SSP4 fluorescence at 0 and 44 h are shown in Fig. 12 A,C, respectively and PrestoBlue
339	fluorescence in cells is shown in Fig. 12 B,D, respectively and Fig. 12 E shows PrestoBlue
340	fluorescence in PBS. Consistent with previous observations, at 44 h BSO plus DEM and
341	conoidin A decreased AzMC fluorescence, whereas tiopronin increased it. SSP4 fluorescence
342	was slightly increased by tiopronin, greatly increased (~5 times) by conoidin A and decreased by
343	tiopronin.

With the PrestoBlue method cell viability is determined by the reduction of the non-fluorescent resazurin to fluorescent resorufin, which purportedly occurs in the reducing

346	environment of live cells but not in the more oxidizing environment of dead ones [61]. In
347	AzMC-treated cells, Prestoblue fluorescence was greater in the control cells than it was in PBS
348	after 1 h incubation and fluorescence increased further in the cells but not in PBS at hour two.
349	This indicates that the HEK293 cells are still viable after 48 h in 5% O ₂ . In AzMC-treated cells,
350	both BSO plus DEM and tiopronin produced a further increase in PrestoBlue fluorescence
351	compared to control cells, whereas fluorescence was decreased by conoidin A after 2 h
352	incubation. Prestoblue fluorescence in all SSP4-treated cells was not significantly different from
353	that in PBS.
354	AzMC, SSP4, H_2S (as Na_2S) or mixed polysulfides (as K_2S_n , n=1-7) were then incubated
355	with PrestoBlue in PBS in order to determine they directly affected PrestoBlue fluorescence. As
356	shown in Fig. S11, neither AzMC nor SSP4 directly affected PrestoBlue fluorescence, whereas
357	Na_2S doubled PrestoBlue fluorescence by 30 min and K_2S_n immediately increased fluorescence
358	by over 13 fold. Incubation of Na_2S with AzMC or of K_2S_n with SSP4 for one hour prior to
359	addition of Prestoblue eliminated most of the effect of these sulfides on Prestoblue fluorescence.
360	As shown in Fig. S12A,B , the effect of K_2S_n on PrestoBlue fluorescence was clearly
361	concentration-dependent and both DTT and 3MP increased PrestoBlue fluorescence, whereas
362	neither cysteine nor cystine appeared to react with PrestoBlue.
363	
364	3.12. Verification of AzMC specificity

The effects of GSH, 3-MP, H_2O_2 and the NO donor sodium nitroprusside on AzMC fluorescence in PBS are shown in **Fig. S13A**. None of these compounds, even at the highest concentrations, had any appreciable effect on AzMC fluorescence compared to H_2S .

368	AzMC fluorescence increased in HEK293 cells over 48 h and this was slightly, but
369	significantly ($p < 0.05$) inhibited by AOA+PPG at 48h. Hypoxia greatly increased AzMC
370	fluorescence and this was inhibited by AOA+PPG at both 24 and 48 h (Fig. S13B). These
371	results indicate that AzMC fluorescence reflects cellular H ₂ S production because inhibitors of
372	H ₂ S biosynthesis produced the expected decrease in fluorescence.
373	
374	4. DISCUSSION
375	Peroxiredoxin, thioredoxin and glutathione/glutaredoxin antioxidant systems reduce H ₂ O ₂
376	to H ₂ O by transfering electrons from NADPH via two or more cysteine relay proteins and GSH,
377	the so-called "thiol switches" [21,62-67]. These processes depend on close apposition of the
378	relay molecules and interference with any component will affect their efficacy. This property
379	explains the general observation that the variety of inhibitors used in the present study increase
380	intracellular H_2O_2 and this has been employed in some therapeutic applications, albeit with
381	variable success [22-28,31,59,68-71].
382	Given the chemical and biological similarities between H_2O_2/H_2O and H_2S_2/H_2S , and the
383	role of cysteine and protein thiols in sulfur metabolism, it seems logical to assume that these
384	antioxidant inhibitors would also uniformly decrease H_2S and increase H_2S_2 if they acted via the
385	canonical ROS antioxidant pathways. Failing to observe this (summarized in Table 1), we
386	conclude that these antioxidant systems perform completely different functions with respect to
387	cellular sulfur metabolism and that these may be independent of the ROS-regulating relay
388	switches or they may function in conjunction with heretofore unidentified substrates and enzyme
389	pathways. Our previous observations that catalase, in a NADPH-dependent process, forms H_2S
390	from either thioredoxin, or DTT [55] provides a precedent for this hypothesis.

391	The 'conventional' and 'unconventional' pathways of H_2S and polysulfide metabolism
392	have been summarized in a recent review 72] and provide a convenient starting point for
393	examining the observed effects of ROS antioxidant inhibitors on cellular sulfur metabolism in
394	the present study. H_2S production from L-cysteine, and to a lesser extent L-homocysteine, via the
395	actions of cystathionine γ lyase (CSE), cystathionine β synthase (CBS), and the tandem activities
396	of cysteine amino acid transferase (CAT) and 3-mercaptopyruvate sulfur transferase (3-MST)
397	have been well established as has been H_2S production from D-cysteine by D-amino acid oxidase
398	and 3-MST. H_2S can also be produced from polysulfides, although this has been less well
399	characterized in cells. Polysulfides are often thought to arise from oxidation of H ₂ S catalyzed by
400	enzymes such as sulfide quinone oxidoreductase and 3-MST, transition metals, heme proteins
401	and uncatalyzed reactions with nitric oxide (NO). CSE and CBS have also been reported to form
402	cysteine per- and polysulfides (CysSS _n H; typically $n=1-4$) from cystine [73] although this may
403	not be physiologically relevant [74]. Recently, Akaike et al. [74] provided compelling evidence
404	that cysteine is persulfidated and polysulfidated by another, sulfur-donating cysteine in a reaction
405	that is catalyzed by cysteinyl tRNA synthase (CARS). These per- and polysulfide cysteine are
406	co-translationally incorporated into proteins a reaction also catalyzed by CARS. Two CARS,
407	cytoplasmic (CARS1) and mitochondrial (CARS2) are found in eukaryotes with most
408	persulfidation resulting from CARS2, the latter providing the majority of both of mitochondrial
409	as well as cytoplasmic polysulfides. $CysSS_nH$ may account for as much as 70-80% of the
410	protein cysteine and there appears to be a vast interconnected network between polysulfdated
411	proteins and small molecular weight thiols for sulfur signaling, storage and transfer [75,76].
412	This large polysulfide network is also apparent in our observation of the rapid and substantial

- 413 increase in SSP4 fluorescence in the present experiments. Several aspects of the actions of the 414 inhibitors used in the present study deserve special attention in this regard. 415 A number of studies suggest that Trx and 3-MST appear to occupy a unique position at 416 the junction between H₂S/polysulfide metabolism and antioxidant pathways. As we have shown 417 catalase catalyzed the production of H_2S in the presence of NADPH [55]. It has also been shown 418 that Trx releases H₂S from 3MP-persulfidated 3-MST [77] and both H₂S and polysulfides are 419 released from a 3-MST tri-sulfide that is formed when thiosulfate reacts with 3-MST [78]. 420 Reduced Trx also cleaves the intersubunit Cys-Cys bond of an oxidized, inactivated 3-MST 421 dimer thereby reactivating the enzyme [79]. In the brain, 3-MST produces a variety of cysteine 422 and glutathione per- and polysulfides as well as H_2S and H_2S_n [80,81] and the persulfide 423 concentration has been reported to be nearly equal to the concentration of H_2S [82,83]. Germane to the present study, it has recently been shown that exogenous H₂S prevents H₂O₂-induced cell 424 425 death in cells treated with auranofin, which was presumed to inhibit Trx. These studies also showed that H₂S didn't affect Trx ptotein levels but favored dissociation of Trx from the 426 endogenous thioredoxin inhibitor, TXNIP (thioredoxin-interacting protein; [84]. See also 427 reviews; [78,85]. 428 429
- 430 *4.1. BSO and DEM*

Glutathione (GSH) is at the center of cellular redox balance, both as a the most prevalent
intracellular ROS buffer and as an intermediary in the GSH/glutaredoxin antioxidant system
[62]. Both BSO and DEM decrease intracellular GSH over 24 hrs in primary cortical cultures
containing both neurons and astrocytes, however, the mechanisms are different [57]. BSO
inhibits γ-glutamylcysteine synthase, the rate-limiting enzyme in GSH synthesis, which increases

436 437 intracellular cysteine, decreases cystine uptake and increases oxidative stress [57,70]. DEM

directly conjugates to GSH which lowers intracellular cysteine and stimulates cystine uptake.

438

DEM may [68] or may not [57] increase oxidative stress.

439 Despite the opposite effects of BSO and DEM on intracellular cysteine, both inhibitors 440 decreased intracellular H₂S without affecting polysulfides. Although we used different cells than 441 those examined by Albano et al. [57], our results suggests that of BSO and DEM have the same 442 effects in HEK293 cells then perhaps as much as half of the H₂S production in HEK293 cells is 443 derived from a sulfur moiety other than cysteine. This is supported by our recent observations 444 that inhibiting CSE, CBS and 3-MST with drugs or by siRNA only decreases cellular H₂S 445 production by half (Olson et al., in review). Evidence that the inhibitory effects of BSO and 446 DEM on H₂S are mediated via GSH is further supported by the relatively rapid inhibitory effect 447 of DEM compared to BSO (Fig. 10) which we interpret as the immediate lowering of GSH due 448 to DEM binding compared to BSO which inhibits GSH synthesis but does not directly remove 449 affect GSH.

450 It is possible that H₂S is derived directly from GSH or that GSH mediates some 451 transsulfuration process with another polysulfide than then releases H_2S . The identity of this per-452 or polysulfide is unknown. However, it is doubtful that this is cystine. Cystine does not appear 453 to be a source of H₂S in HEK293 cells [74] and we showed that it actually decreased intracellular 454 H_2S (Fig. 2). Furthermore, the cystine effect cannot be indirect as it slightly increased both 455 AzMC and SSP4 fluorescence in buffer (Fig S3). The inability of exogenous cystine to affect 456 BSO- and DEM-induced reduction in intracellular H₂S, despite the fact that DEM increases 457 cystine uptake via induction of system X_c⁻ transporter [57,86] and BSO decreases it [57] further

- 458 supports the hypothesis that these compounds do not act through an indirect effect on cellular459 cysteine or cystine.
- 460
- 461 *4.2. Auranofin*

462	Auranofin is an irreversible inhibitor of the seleno-antioxidant enzymes, glutathione
463	reductase and thioredoxin reductase [27,58,59]. Auranofin, like BSO and DEM, increases ROS
464	in cells and in our studies it decreased AzMC fluorescence, as did BSO and DEM (Fig. 3).
465	Unlike BSO or DEM, auranofin also decreased SSP4 fluorescence (Fig. 3). This latter effect
466	could be attributable to a direct effect on the interaction of SSP4 with polysulfides as auranofin
467	inhibited the reaction of SSP4 with K_2S_n to the same extent (Fig. S5), although if SSP4 was
468	administered to HEK293 cells several days after auranofin there was an increase in polysulfides
469	suggesting a rebound from an initial inhibition of polysulfide production (Fig. 4). Both AzMC
470	and SSP4 are irreversible RSS fluorophores and provide a history of the amount of RSS
471	produced not the current concentration. By adding SSP4 on consecutive days after auranofin,
472	BSO and DEM, as we did in Fig. 4, we were able to follow polysulfide production at different
473	time points and the delayed increase in SSP4 fluorescence in treated cells suggests this rebound
474	effect.

475

476 *4.3. Conoidin A*

477 Conoidin A concentration-dependently decreased cellular H₂S and increased polysulfides
478 (Figs. 5, 10, 11) with the effect on the latter appearing fairly rapid, i.e., within the initial few
479 hours and becoming even more pronounced over the ensuing two days. The effects on
480 polysulfides were unlike that produced by any other inhibitor suggesting that conoidin A has

4	82	

481 specific effects on polysulfide metabolism. As conoidin A is a covalent inhibitor of peroxiredoxin [60], our results implicate peroxiredoxins in polysulfide metabolism. 82 Peroxiredoxins are ubiquitously distributed in eukaryotes and well known for their ability 483 484 to scavenge as much as 90% of intracellular H_2O_2 . Recent evidence suggests that they also play 485 key roles in H_2O_2 signaling [64-66]. Like the other antioxidants examined in our study, 486 peroxiredoxins employ cysteine redox switches. As eloquently discussed by Stöcker et al. [66], 487 the conundrum of H_2O_2 signaling is the fact that peroxisomes are far more prevalent in cells and 488 have a much greater affinity for H_2O_2 than do the putative target thiols of regulatory proteins. So 489 the question becomes, how can H_2O_2 selectively react with the appropriate target? Stöcker et al. 490 [66] offer two possibilities, in the first, two-step relay, the H_2O_2 -oxidized peroxidase oxidizes an 491 intermediary oxidoreductase which then acts as a relay between the initial peroxidase and target 492 protein. In the second one-step mechanism the peroxidase forms a complex with the target 493 protein and the oxidizing equivalents are transferred directly from the peroxidase to the target. 494 Spatial constraints in the site(s) of oxidant production and effector receptivity can convey 495 additional specificity. Our results suggest a third signaling possibility, H₂S, which is produced in 496 response to a stressor, e.g., hypoxia [87], is oxidized by peroxiredoxins to a polysulfide which 497 then persulfidates the cysteine of the regulatory protein. This mechanism may resolve another 498 conundrum, that being the identity of the oxygen sensor by supporting RSS via H₂S [87] in favor 499 of ROS [88].

500

501 4.4. Tiopronin

502 Glutathione peroxidases (GPx) are a family of selenocysteine-containing enzymes that 503 catalytically degrade H₂O₂ consuming two GSH and in the process generating oxidized

504	glutathione (GSSG) and H ₂ O. Tiopronin is a reversible glutathione peroxidase inhibitor believed
505	to exert biological activity in part by ROS scavenging mediated by its thiol group [25,89,90].
506	Given that GPx consumes GSH it seems likely that tiopronin would increase GSH if GPx was
507	actively metabolizing H_2O_2 . We observed that tiopronin produced a profound increase in
508	intracellular H_2S (Figs. 6, 10) that could not be attributed to a direct effect of tiopronin on
509	interactions between AzMC, H ₂ S and tiopronin, all of which tended to decrease AzMC
510	fluorescence (Fig. S7). These results support, albeit in a correlational context, the role of GSH in
511	H_2S production; tiporonin increases GSH and H_2S while BSE and DEM decrease GSH and H_2S
512	supporting the concept of H_2S production that is independent of intracellular cysteine.
513	
514	4.5. Avoiding artifacts; interference, interactions and other considerations
515	Most analytical methodologies are developed with consideration for specificity regarding
516	analytes with chemical similarities, whereas other potential artifacts are less commonly
517	identified. These pitfalls have been pointed out with respect to ROS [91,92]. We also
518	considered the possibility that fluorophores (and an amperometric H_2O_2 electrode) that were
519	designed to measure ROS also detected RSS and showed that this indeed was the case. Two of
520	these, the redox-sensitive green fluorescent protein, roGFP and the H_2O_2 electrode, were actually
521	far more sensitive to RSS than they were to ROS [41]. Fortunately for the present study, neither
522	AzMC nor SSP4 appear to react with H ₂ O ₂ , the NO donor diethylamine NONOate or the free
523	radical dipotassium nitrosodisulfonate (Fremy's salt) and AzMC does not react with polysulfides
524	and SSP4 does not react with H_2S [93]. However, Bibli et al. also reported that AzMC was
525	approximately 4.6, 3.6 and 2.5 times more sensitive to Cys, 3-MP and GSH, respectively than it
526	was to H ₂ S [93]. We did not observe this dramatic of an effect of Cys, which only increased

527	AzMC fluorescence by less than 15% (Fig. S3A). Nor did we observe any appreciable effect of
528	GSH, 3-MP, H_2O_2 or the NO-donor sodium nitroprusside on AzMC fluorescence (Fig. S13A)
529	suggesting that these compounds do not interfere with H ₂ S-mediated AzMC fluorescence.
530	Furthermore, we also observed that inhibitors of H ₂ S biosynthesis also inhibited AzMC
531	fluorescence in HEK293 cells indicating that AzMC is an effective probe of cellular H_2S
532	production. While these do not encompass all possible ROS or RSS, we can at least rule out a
533	few of the more probable interfering molecules.
534	In the present study we looked for three other potential problems, reactions between the
535	fluorophores and inhibitors (left panels in Figs. S1-S10), reactions between the inhibitors and
536	RSS (middle panels in Figs. S1-S10) and optical quenching or other interference of the RSS-
537	activated fluorophore by the inhibitors (right panels in Figs. S1-S10). These experiments
538	showed potential problems with a number of inhibitors that could affect interpretation of their
539	effects on RSS in cells. Conoidin A appeared to interfere with both AzMC and SSP4
540	fluorescence (Fig. S6) which obviated definitive conclusions of its effect on cellular H_2S
541	metabolism but not on polysulfide production as it increased SSP4 fluorescence in cells.
542	Tiopronin also interfered with AzMC and SSP4 fluorescence in buffer (Fig. S7) but produced the
543	opposite response in cellular AzMC fluorescence suggesting it too had a direct effect on cellular
544	H ₂ S production. 2-AAPA appeared to directly react with SSP4 (Fig. S9), while ebselen
545	appeared to catalyze H ₂ S oxidation to polysulfides which resulted in a decrease in AzMC
546	fluorescence and an increase in SSP4 fluorescence (Fig. S8). It was not possible to ascertain if
547	either 2-AAPA or ebselen affected cellular RSS. Nor can we conclude that H ₂ S and polysulfides
548	are the only RSS affected by these inhibitors. Sulfenyl cysteine persulfide (Cys-SSOH) has
549	recently been identified [94] that could escape undetected if not reactive with SSP4 as could

other polysulfoxides [95]. These all need to be resolved as the RSS methodologies aredeveloped.

552 We have previously shown that a number of metal-centered porphyrins and the 553 porphyrin-containing antioxidant enzyme, catalase, optically interfere with fluorescein-type 554 fluorophores [96] so the effects of the inhibitors in the present study was not entirely 555 unanticipated. We have also shown that a number of the methods used to measure ROS cannot 556 distinguish between ROS and RSS [41]. Most notably, we found that the redox-sensitive green 557 fluorescent protein, roGFP, arguably the gold standard ROS probe [97], is two hundred times 558 more sensitive to RSS than it is to ROS. The redox sensitivity of roGFP is derived from two 559 cysteines inserted into the protein that form an easily reduced disulfide bridge that when oxidized 560 changes the fluorescence absorption spectrum [98]. This clearly explains the responsivity of 561 roGFP to RSS. roGFPs have also been fused with redox catalysts. roGFP fused to 562 peroxiredoxins or Orp1 is reported to provide real time H₂O₂ probes [99-101], and when fused 563 with glutaredoxin it is reported to be a very specific probe for the 2GSH/GSSG redox couple 564 [101]. The sensitivity of all of these modified roGFP probes to RSS will need to be examined before it can be concluded that they are specific for ROS-related events or if they also report 565 566 RSS activities.

567

568 4.6. Is PrestoBlue a polysulfide probe?

Reduction of resazurin (PrestoBlue) by the reducing environment in viable cells produces
the fluorescent resorufin and is the basis for this assay [61] and our application in the present
stidy (Fig. 12). Using this method we showed that HEK293 cells remained viable for up to 48 h
in 5% O₂. We also showed that cells treated with BSO plus DEM, conoidin A or tiopronin also

573	reduced Prestoblue suggesting that these inhibitors also did not affect viability. However,
574	conoidin A halved and tiopronin doubled PrestoBlue fluorescence in AzMC-treated cells,
575	whereas an increase in PrestoBlue fluorescence was not observed in cells treated with SSP4.
576	These findings suggest that either, 1) AzMC and/or SSP4 directly affect PrestoBlue fluorescence,
577	2) SSP4 kills HEK293 cells, or 3) H_2S and/or polysulfides reduce resazurin to resorufin. Our
578	evidence of these reactions in buffer (Fig. S11) suggests the latter. First, neither AzMC nor
579	SSP4 directly affected PrestoBlue fluorescence. Second, if SSP4 killed the cells then we would
580	not expect to see SSP4 fluorescence increase in cells over time nor that this would be
581	differentially sensitive to inhibitors whose effects were shown to be cell-dependent. In the
582	absence of cells, we clearly showed that both H_2S and polysulfides reduce PrestoBlue and that
583	polysulfides are far more efficacious in so doing. Figure S12 clearly shows that this is not a
584	general effect of thiols as while DTT and 3MP also reduced PrestoBlue, cysteine and cystine did
585	not. This suggests that endogenous H_2S , polysulfides or select thiols also are responsible for
586	reducing PrestoBlue in cells. The greater efficacy of polysulfides compared to H_2S is likely due
587	to the fact that they are better reductants than H_2S [76]. So why does SSP4 prevent any
588	PrestoBlue reduction in cells? We propose that this is due to SSP4 binding to endogenous
589	polysulfides as they are formed before the polysulfides can reduce the Prestoblue. Evidence for
590	this is shown by incubating SSP4 with polysulfides for one hour prior to addition of PrestoBlue
591	which essentially completely inhibits the effect of polysulfides.

592 Our results also suggested that the mechanism of PrestoBlue reduction in live cells is due, 593 at least in part, to endogenous polysulfides or other thiols. They also suggest the possibility that 594 the supposed oxidation of dead cells which inhibits Prestoblue reduction is not due to increased 595 ROS such as H_2O_2 but due to decreased production of persulfide or other thiol. If both conoidin

596	A and tiopronin were to increase ROS, as generally assumed (see introduction), then both should
597	have the same effect on PrestoBlue fluorescence, i.e., to decrease it. However, we not only show
598	that these inhibitors have the opposite effects on PrestoBlue fluoresence in cells, but that these
599	effects are identical to their effects on cellular H_2S . Clearly, additional work is necessary to
600	identify the actual thiols that are responsible for PrestoBlue fluorescence.
601	4.7. Summary
602	The present experiments suggest that a variety of compounds commonly used to affect
603	cellular redox balance by inhibiting antioxidant pathways also affect cellular H_2S and
604	polysulfides. These experiments also indicate that the effects of these inhibitors on sulfur
605	metabolism cannot be explained by disruption of the canonical ROS antioxidant pathways and
606	subsequent secondary effects of these ROS on sulfur metabolism. Rather they suggest that these
607	inhibitors directly affect cellular sulfur metabolism, potentially via established pathways and/or
608	other mechanisms that remain to be identified.
609	
610	ACKNOWLEDGMENTS
611	The authors wish to acknowledge the technicial assistance of N. Skora. This research
612	was supported in part by IUSM BRG grant and by personal funds (KRO).
613	

615 **Table 1.** Summary of effects of ROS inhibitors on H_2S and polysulfides in HEK293 cells.

616	
-----	--

Inhibitor	Target	H ₂ S	Polysulfides	Buffer [#]	
				AzMC	SSP4
BSO	γ-GCS	Dec (C-D)	NC	NC	NC
DEM	binds GSH	Dec (C-D)	NC	NC	NC
Auranofin	GSHR	Dec (C-D)	Dec (C-D)	NC	Dec (40)
Conoidin A	Prx	Dec (C-D)*	Inc (C-D)	Dec (60)	Dec (40)
Tiopronin	GPx	Inc (C-D)	NC*	Dec (35)	Dec (80)
2-AAPA	GSHR, TrxR	Dec (C-D)*	Inc*	Dec (30)	Inc (230)
ADA	CSSC uptake	NC	NC	NC	Dec (30)
Ebselen	H ₂ O ₂ scavenger	Dec (C-D)*	Inc*	Dec (70)	Inc (570)

617

618 Abbreviations; ADA, aminoadipic acid; AzMC, H₂S fluorophore; BSO, L-buthionine-

619 sulfoximine; C-D, concentration dependent; CSSC, cystine; Dec, decrease; DEM, diethyl

620 maleate; γ -GCS, γ -glutamylcysteine synthase; GSH, glutathione; Gpx, glutathione peroxidase

621 GSHR, glutathione reductase; Grx, glutaredoxin; Inc, increase; NC, no change; Prx,

622 perodiredoxin; Trx, thioredoxin; TrxR, thioredoxin reductase; *, effects may be mediated by

- 623 direct interaction with fluorophore or sulfides. #, only pronounced and consistent effects on
- 624 AzMC or SSP4 are considered; (maximum percent change).
- 625

626 **REFERENCES**

- 627
- 628 [1] N. Brandes, H. Tienson, A. Lindemann, V. Vitvitsky, D. Reichmann, R. Banerjee, U. Jakob,
- Time line of redox events in aging postmitotic cells, Elife, 2 (2013) e00306.
- 630 [2] D.I. Brown, K.K. Griendling, Regulation of signal transduction by reactive oxygen species in
- the cardiovascular system, Circ. Res, 116 (2015) 531-549.
- [3] Y.R. Chen, J.L. Zweier, Cardiac mitochondria and reactive oxygen species generation, Circ.
- 633 Res, 114 (2014) 524-537.
- 634 [4] E.T. Chouchani, V.R. Pell, A.M. James, L.M. Work, K. Saeb-Parsy, C. Frezza, T. Krieg,
- 635 M.P. Murphy, A Unifying Mechanism for Mitochondrial Superoxide Production during
- 636 Ischemia-Reperfusion Injury, Cell Metab, 23 (2016) 254-263.
- 637 [5] M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis, Free
- 638 Radic. Biol. Med, 48 (2010) 749-762.
- [6] M.L. Circu, T.Y. Aw, Intestinal redox biology and oxidative stress, Semin. Cell Dev. Biol, 23
- 640 (2012) 729-737.
- [7] S.B. Gibson, Investigating the role of reactive oxygen species in regulating autophagy,
- 642 Methods Enzymol, 528 (2013) 217-235.
- [8] R.L. Goncalves, C.L. Quinlan, I.V. Perevoshchikova, M. Hey-Mogensen, M.D. Brand, Sites
- of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under
- 645 conditions mimicking rest and exercise, J. Biol. Chem, 290 (2015) 209-227.
- [9] J.D. Lambeth, A.S. Neish, Nox enzymes and new thinking on reactive oxygen: a double-
- 647 edged sword revisited, Annu. Rev. Pathol, 9 (2014) 119-145.

- [10] X. Li, P. Fang, J. Mai, E.T. Choi, H. Wang, X.F. Yang, Targeting mitochondrial reactive
- 649 oxygen species as novel therapy for inflammatory diseases and cancers, Journal of hematology &
 650 oncology, 6 (2013) 19.
- [11] K.M. Holmstrom, T. Finkel, Cellular mechanisms and physiological consequences of redox-
- dependent signalling, Nat. Rev. Mol. Cell Biol, 15 (2014) 411-421.
- [12] A. Olschewski, E.K. Weir, Redox Regulation of Ion Channels in the Pulmonary Circulation,
- 654 Antioxid. Redox. Signal, (2014).
- [13] E. Radi, P. Formichi, C. Battisti, A. Federico, Apoptosis and oxidative stress in
- neurodegenerative diseases, Journal of Alzheimer's disease : JAD, 42 Suppl 3 (2014) S125-152.
- [14] M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr.
- 658 Biol, 24 (2014) R453-R462.
- [15] E. Schulz, P. Wenzel, T. Munzel, A. Daiber, Mitochondrial redox signaling: Interaction of
- 660 mitochondrial reactive oxygen species with other sources of oxidative stress, Antioxid. Redox.
- 661 Signal, 20 (2014) 308-324.
- [16] K. Sharma, Obesity and Diabetic Kidney Disease: Role of Oxidant Stress and Redox
- Balance, Antioxidants & redox signaling, 25 (2016) 208-216.
- [17] H. Sies, Hydrogen peroxide as a central redox signaling molecule in physiological oxidative
- stress: Oxidative eustress, Redox Biol, 11 (2017) 613-619.
- [18] H. Sies, C. Berndt, D.P. Jones, Oxidative Stress, Annu Rev Biochem, 86 (2017) 715-748.
- [19] C.C. Winterbourn, Are free radicals involved in thiol-based redox signaling?, Free Radic.
- 668 Biol. Med, 80 (2014) 164-170.

- [20] A.M. Day, J.D. Brown, S.R. Taylor, J.D. Rand, B.A. Morgan, E.A. Veal, Inactivation of a
- 670 peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized
- 671 proteins and cell survival, Mol Cell, 45 (2012) 398-408.
- [21] M. Deponte, C.H. Lillig, Enzymatic control of cysteinyl thiol switches in proteins, Biol.
- 673 Chem, (2015).
- [22] L.F. de Souza, A.E. Schmitz, L.C.S. da Silva, K.A. de Oliveira, C.B. Nedel, C.I. Tasca, A.F.
- de Bem, M. Farina, A.L. Dafre, Inhibition of reductase systems by 2-AAPA modulates
- 676 peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells, Toxicol In
- 677 Vitro, 42 (2017) 273-280.
- 678 [23] A. Glasauer, N.S. Chandel, Targeting antioxidants for cancer therapy, Biochemical
- 679 pharmacology, 92 (2014) 90-101.
- 680 [24] A. Graczyk-Jarzynka, R. Zagozdzon, A. Muchowicz, M. Siernicka, P. Juszczynski, M.
- 681 Firczuk, New insights into redox homeostasis as a therapeutic target in B-cell malignancies, Curr

682 Opin Hematol, 24 (2017) 393-401.

- 683 [25] M.D. Hall, T.S. Marshall, A.D. Kwit, L.M. Miller Jenkins, A.E. Dulcey, J.P. Madigan, K.M.
- 684 Pluchino, A.S. Goldsborough, K.R. Brimacombe, G.L. Griffiths, M.M. Gottesman, Inhibition of
- 685 glutathione peroxidase mediates the collateral sensitivity of multidrug-resistant cells to tiopronin,
- 686 J Biol Chem, 289 (2014) 21473-21489.
- 687 [26] V. Reshetnikov, J. Hahn, C. Maueroder, C. Czegley, L.E. Munoz, M. Herrmann, M.H.
- 688 Hoffmann, A. Mokhir, Chemical Tools for Targeted Amplification of Reactive Oxygen Species
- in Neutrophils, Front Immunol, 9 (2018) 1827.

690	[27] H.C. May, J.J. Yu, M.N. Guentzel, J.P. Chambers, A.P. Cap, B.P. Arulanandam,
691	Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin
692	System, Front Microbiol, 9 (2018) 336.
693	[28] S.N. Rodman, J.M. Spence, T.J. Ronnfeldt, Y. Zhu, S.R. Solst, R.A. O'Neill, B.G. Allen, X.
694	Guan, D.R. Spitz, M.A. Fath, Enhancement of Radiation Response in Breast Cancer Stem Cells
695	by Inhibition of Thioredoxin- and Glutathione-Dependent Metabolism, Radiat Res, 186 (2016)
696	385-395.
697	[29] T. Seefeldt, Y. Zhao, W. Chen, A.S. Raza, L. Carlson, J. Herman, A. Stoebner, S. Hanson,
698	R. Foll, X. Guan, Characterization of a novel dithiocarbamate glutathione reductase inhibitor and
699	its use as a tool to modulate intracellular glutathione, J Biol Chem, 284 (2009) 2729-2737.
700	[30] Y. Zhao, T. Seefeldt, W. Chen, X. Wang, D. Matthees, Y. Hu, X. Guan, Effects of
701	glutathione reductase inhibition on cellular thiol redox state and related systems, Arch Biochem
702	Biophys, 485 (2009) 56-62.
703	[31] Y. Zhao, T. Seefeldt, W. Chen, L. Carlson, A. Stoebner, S. Hanson, R. Foll, D.P. Matthees,
704	S. Palakurthi, X. Guan, Increase in thiol oxidative stress via glutathione reductase inhibition as a
705	novel approach to enhance cancer sensitivity to X-ray irradiation, Free Radic Biol Med, 47
706	(2009) 176-183.
707	[32] K.R. Olson, K.D. Straub, The Role of Hydrogen Sulfide in Evolution and the Evolution of
708	Hydrogen Sulfide in Metabolism and Signaling, Physiology (Bethesda), 31 (2016) 60-72.
709	[33] M.R. Filipovic, Persulfidation (S-sulfhydration) and H2S, Handb. Exp. Pharmacol, 230
710	(2015) 29-59.
711	[34] V. Gupta, K.S. Carroll, Sulfenic acid chemistry, detection and cellular lifetime, Biochim.
712	Biophys. Acta, 1840 (2014) 847-875.

- [35] H. Kimura, Signaling molecules: hydrogen sulfide and polysulfide, Antioxid. Redox Signal,
 22 (2015) 362-376.
- [36] C.M. Lo, K.S. Carroll, The redox biochemistry of protein sulfenylation and sulfinylation, J.
- 716 Biol. Chem, 288 (2013) 26480-26488.
- 717 [37] P. Nagy, Mechanistic chemical perspective of hydrogen sulfide signaling, Methods
- 718 Enzymol, 554 (2015) 3-29.
- 719 [38] K. Ono, T. Akaike, T. Sawa, Y. Kumagai, D.A. Wink, D.J. Tantillo, A.J. Hobbs, P. Nagy,
- 720 M. Xian, J. Lin, J.M. Fukuto, Redox chemistry and chemical biology of HS, hydropersulfides,
- and derived species: Implications of their possible biological activity and utility, Free Radic.
- 722 Biol. Med, 17 (2014) 82-94.
- [39] C.C. Winterbourn, Biological Production, Detection, and Fate of Hydrogen Peroxide,
- Antioxidants & redox signaling, (2017).
- 725 [40] D. Zhang, J. Du, C. Tang, Y. Huang, H. Jin, H2S-Induced Sulfhydration: Biological
- Function and Detection Methodology, Front Pharmacol, 8 (2017) 608.
- 727 [41] E.R. DeLeon, Y. Gao, E. Huang, M. Arif, N. Arora, A. Divietro, S. Patel, K.R. Olson, A
- case of mistaken identity: are reactive oxygen species actually reactive sulfide species?, Am J
- 729 Physiol Regul Integr Comp Physiol, 310 (2016) R549-560.
- 730 [42] D.P. Jones, H. Sies, The Redox Code, Antioxidants & redox signaling, 23 (2015) 734-746.
- [43] D.V. Dibrova, D.A. Cherepanov, M.Y. Galperin, V.P. Skulachev, A.Y. Mulkidjanian,
- 732 Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient
- bacteria to triggers of apoptosis in vertebrates, Biochim. Biophys. Acta, 1827 (2013) 1407-1427.
- [44] S.C. Grace, Phylogenetic distribution of superoxide dismutase supports an endosymbiotic
- origin for chloroplasts and mitochondria, Life Sci, 47 (1990) 1875-1886.

736	[45] E.M. Hanschmann, J.R. Godoy, C. Berndt, C. Hudemann, C.H. Lillig, Thioredoxins,
737	glutaredoxins, and peroxiredoxinsmolecular mechanisms and health significance: from
738	cofactors to antioxidants to redox signaling, Antioxid. Redox. Signal, 19 (2013) 1539-1605.
739	[46] M.A. Inupakutika, S. Sengupta, A.R. Devireddy, R.K. Azad, R. Mittler, The evolution of
740	reactive oxygen species metabolism, J Exp Bot, 67 (2016) 5933-5943.
741	[47] B. Knoops, E. Loumaye, D.E. Van, V, Evolution of the peroxiredoxins, Subcell. Biochem,
742	44 (2007) 27-40.
743	[48] J. Lu, A. Holmgren, The thioredoxin antioxidant system, Free Radic. Biol. Med, 66 (2014)
744	75-87.
745	[49] A.F. Miller, Superoxide dismutases: ancient enzymes and new insights, FEBS Lett, 586
746	(2012) 585-595.
747	[50] S.V. Novoselov, V.N. Gladyshev, Non-animal origin of animal thioredoxin reductases:
748	implications for selenocysteine evolution and evolution of protein function through carboxy-
749	terminal extensions, Protein Sci, 12 (2003) 372-378.
750	[51] X.H. Zhang, H. Weissbach, Origin and evolution of the protein-repairing enzymes
751	methionine sulphoxide reductases, Biol. Rev. Camb. Philos. Soc, 83 (2008) 249-257.
752	[52] D.E. Canfield, K.S. Habicht, B. Thamdrup, The Archean sulfur cycle and the early history
753	of atmospheric oxygen, Science, 288 (2000) 658-661.
754	[53] S.W. Poulton, P.W. Fralick, D.E. Canfield, The transition to a sulphidic ocean
755	approximately 1.84 billion years ago, Nature, 431 (2004) 173-177.
756	[54] K.R. Olson, Y. Gao, F. Arif, K. Arora, S. Patel, E.R. DeLeon, T.R. Sutton, M. Feelisch,
757	M.M. Cortese-Krott, K.D. Straub, Metabolism of hydrogen sulfide (H2S) and Production of
758	Reactive Sulfur Species (RSS) by superoxide dismutase, Redox Biol, 15 (2017) 74-85.

759	[55] K.R. Olson, Y. Gao, E.R. DeLeon, M. Arif, F. Arif, N. Arora, K.D. Straub, Catalase as a
760	sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species
761	(RSS), Redox Biol, 12 (2017) 325-339.
762	[56] P.M. May, D. Batka, G. Hefter, E. Konigsberger, D. Rowland, Goodbye to S(2-) in aqueous
763	solution, Chem Commun (Camb), 54 (2018) 1980-1983.
764	[57] R. Albano, N.J. Raddatz, J. Hjelmhaug, D.A. Baker, D. Lobner, Regulation of System xc(-)
765	by Pharmacological Manipulation of Cellular Thiols, Oxid Med Cell Longev, 2015 (2015)
766	269371.
767	[58] Y. Ouyang, Y. Peng, J. Li, A. Holmgren, J. Lu, Modulation of thiol-dependent redox system
768	by metal ions via thioredoxin and glutaredoxin systems, Metallomics : integrated biometal
769	science, 10 (2018) 218-228.
770	[59] F. Radenkovic, O. Holland, J.J. Vanderlelie, A.V. Perkins, Selective inhibition of
771	endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be
772	countered by selenium supplementation, Biochemical pharmacology, 146 (2017) 42-52.
773	[60] J.D. Haraldsen, G. Liu, C.H. Botting, J.G. Walton, J. Storm, T.J. Phalen, L.Y. Kwok, D.
774	Soldati-Favre, N.H. Heintz, S. Muller, N.J. Westwood, G.E. Ward, Identification of Conoidin a
775	as a Covalent Inhibitor of Peroxiredoxin Ii, Org Biomol Chem, 7 (2009) 3040-3048.
776	[61] J. O'Brien, I. Wilson, T. Orton, F. Pognan, Investigation of the Alamar Blue (resazurin)
777	fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur J Biochem, 267 (2000)
778	5421-5426.
779	[62] S. Garcia-Santamarina, S. Boronat, E. Hidalgo, Reversible cysteine oxidation in hydrogen
780	peroxide sensing and signal transduction, Biochemistry, 53 (2014) 2560-2580.

- [63] B. Groitl, U. Jakob, Thiol-based redox switches, Biochim Biophys Acta, 1844 (2014) 13351343.
- 783 [64] E.C. Ledgerwood, J.W. Marshall, J.F. Weijman, The role of peroxiredoxin 1 in redox
- sensing and transducing, Arch Biochem Biophys, 617 (2017) 60-67.
- 785 [65] A. Perkins, K.J. Nelson, D. Parsonage, L.B. Poole, P.A. Karplus, Peroxiredoxins: guardians
- against oxidative stress and modulators of peroxide signaling, Trends Biochem Sci, 40 (2015)

787 435-445.

- 788 [66] S. Stocker, K. Van Laer, A. Mijuskovic, T.P. Dick, The Conundrum of Hydrogen Peroxide
- 789 Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs, Antioxidants & redox
- 790 signaling, 28 (2018) 558-573.
- [67] C.C. Winterbourn, M.B. Hampton, Redox biology: Signaling via a peroxiredoxin sensor,
- 792 Nat. Chem. Biol, 11 (2015) 5-6.
- 793 [68] S.L. Liao, Y.C. Ou, C.Y. Chang, W.Y. Chen, Y.H. Kuan, W.Y. Wang, H.C. Pan, C.J. Chen,
- 794 Diethylmaleate and iodoacetate in combination caused profound cell death in astrocytes, J
- 795 Neurochem, 127 (2013) 271-282.
- [69] A. Markowska, B. Kasprzak, K. Jaszczynska-Nowinka, J. Lubin, J. Markowska, Noble
- metals in oncology, Contemp Oncol (Pozn), 19 (2015) 271-275.
- 798 [70] F. Vargas, I. Rodriguez-Gomez, R. Perez-Abud, P. Vargas Tendero, Y. Baca, R.
- 799 Wangensteen, Cardiovascular and renal manifestations of glutathione depletion induced by
- 800 buthionine sulfoximine, Am J Hypertens, 25 (2012) 629-635.
- 801 [71] Y. Watanabe, C.E. Murdoch, S. Sano, Y. Ido, M.M. Bachschmid, R.A. Cohen, R. Matsui,
- 802 Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1alpha
- and improve limb revascularization, Proc Natl Acad Sci U S A, 113 (2016) 6011-6016.

- [72] K.R. Olson, H2S and polysulfide metabolism: Conventional and unconventional pathways,
 Biochemical pharmacology, 149 (2018) 77-90.
- 806 [73] T. Ida, T. Sawa, H. Ihara, Y. Tsuchiya, Y. Watanabe, Y. Kumagai, M. Suematsu, H.
- 807 Motohashi, S. Fujii, T. Matsunaga, M. Yamamoto, K. Ono, N.O. varie-Baez, M. Xian, J.M.
- 808 Fukuto, T. Akaike, Reactive cysteine persulfides and S-polythiolation regulate oxidative stress
- and redox signaling, Proc. Natl. Acad. Sci. U. S. A, (2014).
- 810 [74] T. Akaike, T. Ida, F.Y. Wei, M. Nishida, Y. Kumagai, M.M. Alam, H. Ihara, T. Sawa, T.
- 811 Matsunaga, S. Kasamatsu, A. Nishimura, M. Morita, K. Tomizawa, A. Nishimura, S. Watanabe,
- K. Inaba, H. Shima, N. Tanuma, M. Jung, S. Fujii, Y. Watanabe, M. Ohmuraya, P. Nagy, M.
- 813 Feelisch, J.M. Fukuto, H. Motohashi, Cysteinyl-tRNA synthetase governs cysteine
- polysulfidation and mitochondrial bioenergetics, Nat Commun, 8 (2017) 1177.
- 815 [75] C.L. Bianco, T. Akaike, T. Ida, P. Nagy, V. Bogdandi, J.P. Toscano, Y. Kumagai, C.F.
- 816 Henderson, R.N. Goddu, J. Lin, J.M. Fukuto, The reaction of hydrogen sulfide with disulfides:
- formation of a stable trisulfide and implications for biological systems, Br J Pharmacol, (2018).
- 818 [76] J.M. Fukuto, L.J. Ignarro, P. Nagy, D.A. Wink, C.G. Kevil, M. Feelisch, M.M. Cortese-
- 819 Krott, C.L. Bianco, Y. Kumagai, A.J. Hobbs, J. Lin, T. Ida, T. Akaike, Biological
- 820 hydropersulfides and related polysulfides a new concept and perspective in redox biology,
- FEBS Lett, 592 (2018) 2140-2152.
- 822 [77] Y. Mikami, N. Shibuya, Y. Kimura, N. Nagahara, Y. Ogasawara, H. Kimura, Thioredoxin
- and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce
- 824 hydrogen sulfide, Biochem. J, 439 (2011) 479-485.

825	[78] N. Nagahara, S. Koike, T. Nirasawa, H. Kimura, Y. Ogasawara, Alternative pathway of
826	H2S and polysulfides production from sulfurated catalytic-cysteine of reaction intermediates of
827	3-mercaptopyruvate sulfurtransferase, Biochem Biophys Res Commun, 496 (2018) 648-653.
828	[79] N. Nagahara, T. Yoshii, Y. Abe, T. Matsumura, Thioredoxin-dependent enzymatic
829	activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a
830	redox switch for activation, J. Biol. Chem, 282 (2007) 1561-1569.
831	[80] Y. Kimura, Y. Toyofuku, S. Koike, N. Shibuya, N. Nagahara, D. Lefer, Y. Ogasawara, H.
832	Kimura, Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in
833	the brain, Sci Rep, 5 (2015) 14774.
834	[81] Y. Kimura, S. Koike, N. Shibuya, D. Lefer, Y. Ogasawara, H. Kimura, 3-Mercaptopyruvate
835	sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-
836	SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S, Sci Rep, 7 (2017)
837	10459.
838	[82] S. Koike, K. Kawamura, Y. Kimura, N. Shibuya, H. Kimura, Y. Ogasawara, Analysis of
839	endogenous H2S and H2Sn in mouse brain by high-performance liquid chromatography with
840	fluorescence and tandem mass spectrometric detection, Free Radic Biol Med, 113 (2017) 355-
841	362.
842	[83] S. Koike, S. Nishimoto, Y. Ogasawara, Cysteine persulfides and polysulfides produced by
843	exchange reactions with H2S protect SH-SY5Y cells from methylglyoxal-induced toxicity
844	through Nrf2 activation, Redox Biol, 12 (2017) 530-539.
845	[84] Z. Mao, Y. Huang, Z. Zhang, X. Yang, X. Zhang, Y. Huang, N. Sawada, T. Mitsui, M.
846	Takeda, J. Yao, Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through
847	regulating the redox state of thioredoxin, Free Radic Biol Med, 134 (2019) 190-199.

848	[85] H. Kimura, Hydrogen polysulfide (H2S n) signaling along with hydrogen sulfide (H2S) and
849	nitric oxide (NO), J Neural Transm (Vienna), 123 (2016) 1235-1245.
850	[86] K. Hosoya, M. Tomi, S. Ohtsuki, H. Takanaga, S. Saeki, Y. Kanai, H. Endou, M. Naito, T.
851	Tsuruo, T. Terasaki, Enhancement of L-cystine transport activity and its relation to xCT gene
852	induction at the blood-brain barrier by diethyl maleate treatment, J Pharmacol Exp Ther, 302
853	(2002) 225-231.
854	[87] K.R. Olson, Hydrogen sulfide as an oxygen sensor, Antioxidants & redox signaling, 22
855	(2015) 377-397.
856	[88] J.T. Sylvester, L.A. Shimoda, P.I. Aaronson, J.P. Ward, Hypoxic pulmonary
857	vasoconstriction, Physiol Rev, 92 (2012) 367-520.
858	[89] J. Chaudiere, E.C. Wilhelmsen, A.L. Tappel, Mechanism of selenium-glutathione
859	peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans, J Biol Chem,
860	259 (1984) 1043-1050.
861	[90] A.S. Goldsborough, M.D. Handley, A.E. Dulcey, K.M. Pluchino, P. Kannan, K.R.
862	Brimacombe, M.D. Hall, G. Griffiths, M.M. Gottesman, Collateral sensitivity of multidrug-
863	resistant cells to the orphan drug tiopronin, J Med Chem, 54 (2011) 4987-4997.
864	[91] H.J. Forman, O. Augusto, R. Brigelius-Flohe, P.A. Dennery, B. Kalyanaraman, H.
865	Ischiropoulos, G.E. Mann, R. Radi, L.J. Roberts, J. Vina, K.J. Davies, Even free radicals should
866	follow some rules: A Guide to free radical research terminology and methodology, Free Radic.
867	Biol. Med, 78 (2015) 233-235.
868	[92] B. Kalyanaraman, V. rley-Usmar, K.J. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham,

869 G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen

- 870 species with fluorescent probes: challenges and limitations, Free Radic. Biol. Med, 52 (2012) 1-6.
- 871
- 872 [93] S.I. Bibli, B. Luck, S. Zukunft, J. Wittig, W. Chen, M. Xian, A. Papapetropoulos, J. Hu, I.
- 873 Fleming, A selective and sensitive method for quantification of endogenous polysulfide
- 874 production in biological samples, Redox Biol, 18 (2018) 295-304.
- 875 [94] D.E. Heppner, M. Hristova, T. Ida, A. Mijuskovic, C.M. Dustin, V. Bogdandi, J.M. Fukuto,
- 876 T.P. Dick, P. Nagy, J. Li, T. Akaike, A. van der Vliet, Cysteine perthiosulfenic acid (Cys-
- 877 SSOH): A novel intermediate in thiol-based redox signaling?, Redox Biol, 14 (2018) 379-385.
- 878 [95] J.I. Toohey, A.J. Cooper, Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory
- 879 roles in biology, Molecules, 19 (2014) 12789-12813.
- 880 [96] K.R. Olson, Y. Gao, F. Arif, K. Arora, S. Patel, E. DeLeon, K.D. Straub, Fluorescence
- 881 quenching by metal centered porphyrins and poryphyrin enzymes, Am J Physiol Regul Integr
- 882 Comp Physiol, 313 (2017) R340-R346.
- 883 [97] M. Schwarzlander, T.P. Dick, A.J. Meye, B. Morgan, Dissecting Redox Biology using
- 884 Fluorescent Protein Sensors, Antioxid. Redox Signal, (2015).
- [98] M.B. Cannon, S.J. Remington, Redox-sensitive green fluorescent protein: probes for 885
- 886 dynamic intracellular redox responses. A review, Methods Mol. Biol, 476 (2008) 51-65.
- 887 [99] M. Gutscher, M.C. Sobotta, G.H. Wabnitz, S. Ballikaya, A.J. Meyer, Y. Samstag, T.P. Dick,
- 888 Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases, J. Biol. Chem, 284 (2009) 31532-31540. 889
- 890 [100] B. Morgan, K. Van Laer, T.N. Owusu, D. Ezerina, D. Pastor-Flores, P.S. Amponsah, A.
- 891 Tursch, T.P. Dick, Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes,
- 892 Nat Chem Biol, 12 (2016) 437-443.

- 893 [101] M. Gutscher, A.L. Pauleau, L. Marty, T. Brach, G.H. Wabnitz, Y. Samstag, A.J. Meyer,
- T.P. Dick, Real-time imaging of the intracellular glutathione redox potential, Nat. Methods, 5(2008) 553-559.

896

897

898 FIGURE CAPTIONS

899 Figure 1. Concentration-dependent inhibitory effects of BSO and DEM on AzMC fluorescence in HEK293 cells in either normoxia (21% O₂) or hypoxia (5% O₂) and effects of 10 µM BSO or 900 100 µM DEM on SSP4 fluorescence in HEK293 cells (right panels). Mean +SE, n=8 wells all 901 902 experiments.

000

903	
904	Figure 2. Effects of 10 μ M BSO and 100 μ M DEM with or without 200 μ M cystine on AzMC
905	and SSP4 fluorescence in normoxic HEK293 cells. Cystine alone decreased AzMC fluorescence
906	but did not significantly affect the greater inhibitory effects of either BSO or DEM on AzMC
907	fluorescence. SSP4 fluorscence was unaffected by cystine, BSO, DEM, alone or in combination.
908	Mean +SE, n=8 wells all experiments.
909	
910	Figure 3. Auranofin concentration-dependently inhibits AzMC and SSP4 fluorescence in
911	HEK293 cells in both normoxia (21% O_2) or hypoxia (5% O_2). Mean +SE, n=8 wells all
912	experiments.
913	
914	Figure 4. Effects of 10 μ M BSO plus 100 μ M DEM and either 3 or 10 μ M auranofin on
915	intracellular AzMC and SSP4 fluorescence in HEK293 cells. BSO, DEM and auranofin were
916	added to all wells at day 1 and AzMC added to separate wells at days 1, 2 and 3 and SSP4 added
917	at day 1, 2, 3 and 4. AzMC fluorescence was inhibited throughout the experimental period,
918	whereas SSP4 fluorescence was inhibited at day 1 but by day 2-3 this was reversed and there was
919	more fluorescence in the inhibited cells. Mean +SE, n=8 wells all experiments.

Q	2	n
/	-	v

Figure 5. Conoidin A concentration-dependently decreases intracellular AzMC fluorescence
and increases SSP4 fluorescence in both normoxic and hypoxic HEK293 cells. Mean +SE, n=8
wells all experiments.

924

925	Figure 6. Tiopronin concentration-dependently inc	creases intracellular AzMC fluorescence in
926	normoxic HEK293 cells and this was further increa	sed in hypoxic cells. After 21 h AzMC
927	fluorescence progressively declined in hypoxic cell	s but continued to rise, albeit slightly in
928	normoxic cells. SSP4 fluorescence was decreased	by tiopronin in both environments with the
929	most notable response in hypoxic cells treated with	1 mM. Mean +SE, n=8 wells all
930	experiments.	

931

Figure 7. Ebselen concentration-dependently decreases intracellular AzMC fluorescence in
normoxic and hypoxic HEK293 cells but has minimal effects on SSP4 fluorescence with the
exception of a delayed increase in fluorescence. Mean +SE, n=8 wells all experiments.

935

Figure 8. 2-AAPA concentration- and time-dependently decreases intracellular AzMC
fluorescence but profoundly, and immediately, increases SSP4 fluorescence in both normoxic
and hypoxic HEK293 cells. Mean +SE, n=8 wells all experiments.

939

940 Figure 9. Aminoadipic acid does not affect AzMC or SSP4 fluorescence in either normoxic or
941 hypoxic HEK293 cells. Mean +SE, n=8 wells all experiments.

942	Figure 10. Short-term effects of BSO, DEM, tiopronin and conoidin A on AzMC fluorescence
943	in HEK293 cells. Mean +SE, n=8 wells all experiments.
944	Figure 11. Short-term effects of conoidin A and auranofin on SSP4 fluorescence in HEK293
945	cells. Mean +SE, n=8 wells all experiments.
946	
947	Figure 12. Effects of BSO plus DEM (10 and 100 μ M, respectively), conoidin A (10 μ M) and
948	tiopronin (1 mM) on AzMC (A) and SSP4 (C) fluorescence at 0 and 44 hr and on PrestoBlue
949	fluorescence in AzMC (B) and SSP4 (D) treated cells 1 h and 2 h after addition of PrestoBlue
950	(hours 47 and 48 after start of experiment). (E) PrestoBlue fluorescence after 1 and 2 h in
951	phosphate buffered saline (PBS). Mean +SE, n=8 wells all experiments; *, significantly
952	(p < 0.005) different from respective control; #, PrestoBlue fluorescence of SSP4-treated cells
953	significantly ($p < 0.005$) different from PrestoBlue in PBS; PrestoBlue fluorescence of all AzMC-
954	treated cells was significantly ($p < 0.05$) different from PBS.S
955	

s sign.

956	Supplementary information
957	
958	Effects of Inhibiting Antioxidant Pathways on Cellular Hydrogen Sulfide and
959	Polysulfide Metabolism
960	
961	Kenneth R. Olson ^{a,b} and Yan Gao ^a
962	a. Indiana University School of Medicine - South Bend Center, South Bend, Indiana 46617 USA
963	b. Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556
964	
965	Running Head: Antioxidant Inhibitors and RSS Metabolism
966	
967	Address correspondence to:
968	Kenneth R. Olson, Ph.D.
969	Indiana University School of Medicine -South Bend
970	Raclin Carmichael Hall
971	1234 Notre Dame Avenue
972	South Bend, IN 46617
973	Phone: (574) 631-7560
974	Fax: (574) 631-7821
975	e-mail: <u>olson.1@nd.edu</u>
976	

977	Supplementary Figures
978	Figures S1-S10. (A, D) direct effects of inhibitors on AzMC and SSP4 fluorescence before
979	addition of inhibitors (t = 0 min) and at 10 and 90 min afterward. (B , E) effects of inhibitors on
980	AzMC and SSP4 in the presence of 100 μ M (B) or 300 μ M (E) H ₂ S. H ₂ S and inhibitors were
981	added after $t = 0$ min. (C, F) effects of inhibitors on fluorescence of AzMC and SSP4
982	preactivated for 120 min with 30 μ M H ₂ S or 30 μ M K ₂ S ₂ , respectively. Mean +SE, n=4 wells; *,
983	p<0.05 compared to AzMC or SSP4 only at same time.
984	
985	Figure S11. Effects of AzMC, SSP4, Na_2S and K_2S_n on PrestoBlue (PB) fluorescence in
986	phosphate buffered saline. (A) BP only, (B) plus 25 μ M AzMC, (C) plus 300 μ M H ₂ S as Na ₂ S,
987	(D) one hr after 300 μ M H ₂ S reaction with 25 μ M AzMC, (E) plus 10 μ M SSP4, (F) plus 300
988	μ M polysulfide as K ₂ S _n , (G) one hr after 300 μ M K ₂ S _n reaction with 10 μ M SSP4. Mean +SE,
989	n=4 wells. Note different y axis scale in F .
990	
991	Figure S12 . (A) K_2S_n concentration response after 1 h with PrestoBlue; X axis numbers 1, 2, 3,
992	4, 5, 6 correspond to 1, 3, 10, 30, 100, 300 μ M K ₂ S _n , respectively. (B) Effects of 300 μ M each
993	of cysteine (Cys), cystine (CSSC), dithiothreitol (DTT) and 3-mercaptopyruvate (3MP) on
994	Prestoblue florescence as a function of time. Mean +SE, n=4 wells (buffer) or 8 wells.
995	
996	Figure S13. (A) Effects of potential interfering molecules on AzMC fluorescence in buffer
997	compared to H ₂ S; glutathione (GSH), 3-mercaptopyruvate (3-MP), peroxide (H ₂ O ₂) and sodium
998	nitroprusside (NP). Mean +SE, n=4 wells. (B) Inhibitors of H_2S biosynthesis, AOA+PPG

- decrease AzMC fluorescence in HEK293 cells in normoxia (21% O2) at 48 h and in hypoxia
- 1000 (5% O₂) at both 24 and 48h. Mean +SE, 8 wells; *, p < 0.05.

Reactive oxygen species (ROS) and reactive sulfide species (RSS) are chemically and biologically similar.

Evolution of antioxidant pathways is more consistent with RSS metabolism than with ROS metabolism

Here we show that canonical inhibitors of ROS antioxidant pathways affect RSS in HEK293 cells independent of ROS.

These results indicate that antioxidant pathways are involved in RSS metabolism in cells.

RSS may be the actual effector pathway(s) of ROS antioxidant therapies.