267 research outputs found

    Characterizing ξ

    Get PDF
    Let ℳ and be von Neumann algebras without central summands of type I1. Assume that ξ∈ℂ with ξ≠1. In this paper, all maps Φ:ℳ→ satisfying ΦAB-ξBA=ΦAΦB-ξΦBΦ(A) are characterized

    Fruit quality assessment based on mineral elements and juice properties in nine citrus cultivars

    Get PDF
    IntroductionCitrus fruit is considered a superfood due to its multiple nutritional functions and health benefits. Quantitative analysis of the numerous quality characteristics of citrus fruit is required to promote its sustainable production and industrial utilization. However, little information is available on the comprehensive quality assessment of various fruit quality indicators in different citrus cultivars.MethodsA total of nine different fresh citrus fruits containing seeds were collected as the experimental materials. The objectives of this study were: (i) to determine the morphological and juice properties of citrus fruits, (ii) to measure the mineral elements in the peel, pulp, and seeds, and (iii) to evaluate the fruit quality index (FQI) using the integrated quality index (IQI) and the Nemoro quality index (NQI) methods.ResultsThere were significant differences in fruit quality characteristics, including morphological, mineral, and juice quality, among the investigated citrus cultivars. The proportion of pulp biomass was the highest, followed by that of peel and seeds. N and Cu had the highest and lowest concentrations, respectively, among the measured elements across all citrus fruits, and the amounts of N, P, Mg, Cu, and Zn in seeds, K and Al in pulp, and Ca, Fe, and Mn in peel were the highest, dramatically affecting the accumulation of minerals in the whole fruit and their distribution in various fruit parts. Additionally, Ningmeng fruits had the highest vitamin C and titratable acidity (TA) but the lowest total soluble solids (TSS) and total phenolic (TP) contents, resulting in the lowest TSS/TA and pH values. In contrast, Jinju fruits had the highest TSS and TP contents. Based on the mineral element and juice quality parameters, principal component analysis showed that the citrus fruits were well separated into four groups, and the dendrogram also showed four clusters with different distances. The FQI range based on the IQI method (FQIIQI) and NQI method (FQINQI) was 0.382-0.590 and 0.106-0.245, respectively, and a positive relationship between FQIIQI and FQINQI was observed.ConclusionOur results highlight the great differences in mineral and juice characteristics among fruit parts, which mediated fruit quality. The strategy of fruit quality assessment using the FQI can be expanded for targeted utilization in the citrus industry

    Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines

    Get PDF
    Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines

    Transcriptional analysis of human peripheral blood mononuclear cells stimulated by Mycobacterium tuberculosis antigen

    Get PDF
    BackgroundMycobacterium tuberculosis antigen (Mtb-Ag) is a polypeptide component with a molecular weight of 10-14 kDa that is obtained from the supernatant of the H37Ra strain after heat treatment. It stimulates the activation and proliferation of γδT cells in the blood to produce an immune response against tuberculosis. Mtb-Ag is therefore crucial for classifying and detecting the central genes and key pathways involved in TB initiation and progression.MethodsIn this study, we performed high-throughput RNA sequencing of peripheral blood mononuclear cells (PBMC) from Mtb-Ag-stimulated and control samples to identify differentially expressed genes and used them for gene ontology (GO) and a Kyoto Encyclopedia of Genomes (KEGG) enrichment analysis. Meanwhile, we used PPI protein interaction network and Cytoscape analysis to identify key genes and qRT-PCR to verify differential gene expression. Single-gene enrichment analysis (GSEA) was used further to elucidate the potential biological functions of key genes. Analysis of immune cell infiltration and correlation of key genes with immune cells after Mtb-Ag-stimulated using R language.ResultsWe identified 597 differentially expressed genes in Mtb-Ag stimulated PBMCs. KEGG and GSEA enrichment analyzed the cellular pathways related to immune function, and DEGs were found to be primarily involved in the TNF signaling pathway, the IL-17 signaling pathway, the JAK-STAT signaling pathway, cytokine-cytokine receptor interactions, and the NF-κB signaling pathway. Wayne analysis using GSEA, KEGG, and the protein-protein interaction (PPI) network showed that 34 genes, including PTGS2, IL-1β, IL-6, TNF and IFN-γ et al., were co-expressed in the five pathways and all were up-regulated by Mtb-Ag stimulation. Twenty-four DEGs were identified using qRT-PCR, including fourteen up-regulated genes (SERPINB7, IL20, IFNG, CSF2, PTGS2, TNF-α, IL36G, IL6, IL10, IL1A, CXCL1, CXCL8, IL4, and CXCL3) and ten down-regulated genes (RTN1, CSF1R CD14, C5AR1, CXCL16, PLXNB2, OLIG1, EEPD1, ENG, and CCR1). These findings were consistent with the RNA-Seq results.ConclusionThe transcriptomic features associated with Mtb-Ag provide the scientific basis for exploring the intracellular immune mechanisms against Mtb. However, more studies on these DEGs in pathways associated with Mtb-Ag stimulation are needed to elucidate the underlying pathologic mechanisms of Mtb-Ag during Mtb infection

    Different Chemotherapy Regimens in the Management of Advanced or Metastatic Urothelial Cancer: a Bayesian Network Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background/Aims: Urothelial cancer (UC) as a chemotherapy-sensitive tumor, has achieved remarkable progresses in therapeutic paradigm, particularly in the advanced/metastatic stages. However, both clinicians and patients are confused when it comes to choosing the optimal chemotherapy. Hence, this article was aimed to conduct a comprehensive comparison of different chemotherapy regimens for advanced or metastatic UC in terms of survival benefits or adverse events. Methods: The online databases PubMed, EMBASE and Web of Science were searched systematically and comprehensively for randomized controlled trials (RCTs) up to September 15, 2017. The pooled hazard ratios (HRs) or odds ratios (ORs) with 95% credible interval (CrI) were calculated by Markov chain Monte Carlo methods. The effectiveness and safety of included regimens were conducted to provide a hierarchy by means of rank probabilities with the help of “R-3.4.0” software and the “gemtc-0.8.2” package. The surface under the cumulative ranking curve (SUCRA) was also incorporated in our analysis for ranking the corresponding chemotherapy regimens. Results: Ten different chemotherapy regimens involved in this article were predominantly of trials in a first-line setting, and eight clinical outcomes were ultimately analyzed in this study. In terms of Overall response rate (ORR), Overall survival (OS) or Progression-free survival (PFS)/Time to progression (TTP), the rank probabilities and SUCRA indicated that Paclitaxel/cisplatin/gemcitabine (PCG) was superior to gemcitabine/cisplatin (GC) or methotrexate/vinblastine/doxorubicin/cisplatin (MVAC), the traditional first-line treatment for advanced/metastatic UC. In the case of ORR or PFS/TTP, GC+sorafenib also displayed its superiority in comparison with GC or MVAC. Despite their survival benefits, PCG or GC+sorafenib presented a relatively higher incidence of adverse events. Conclusion: Our results revealed that by adding a paclitaxel or sorafenib into the first-line GC, it could yield a better survival benefit, but also worsen adverse events for advanced/ metastatic UC. Clinically, physicians should weigh the merits of these approaches to maximize the survival benefits of eligible patients

    Accurate Inference of Local Phased Ancestry of Modern Admixed Populations

    Get PDF
    Population stratification is a growing concern in genetic-association studies. Averaged ancestry at the genome level (global ancestry) is insufficient for detecting the population substructures and correcting population stratifications in association studies. Local and phase stratification are needed for human genetic studies, but current technologies cannot be applied on the entire genome data due to various technical caveats. Here we developed a novel approach (aMAP, ancestry of Modern Admixed Populations) for inferring local phased ancestry. It took about 3 seconds on a desktop computer to finish a local ancestry analysis for each human genome with 1.4-million SNPs. This method also exhibits the scalability to larger datasets with respect to the number of SNPs, the number of samples, and the size of reference panels. It can detect the lack of the proxy of reference panels. The accuracy was 99.4%. The aMAP software has a capacity for analyzing 6-way admixed individuals. As the biomedical community continues to expand its efforts to increase the representation of diverse populations, and as the number of large whole-genome sequence datasets continues to grow rapidly, there is an increasing demand on rapid and accurate local ancestry analysis in genetics, pharmacogenomics, population genetics, and clinical diagnosis

    Perspective on ultramicroporous carbon as sulphur host for Li–S batteries

    Get PDF
    Lithium-sulphur (Li-S) batteries are currently considered as next-generation battery technology. Sulphur is an attractive positive electrode for lithium metal batteries, mainly due to its high capacity (1675 mAh g-1) and high specific energy (2600 Wh kg-1). The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides. The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion. The solubility of polysulphide gradually reduces the amount of sulphur in the cathode, thereby limiting the cycle life of Li-S batteries. Several strategies have been proposed to improve the cycling stability of Li-S batteries. A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon (UMC) as a host for sulphur. The pore size of UMC which is below 7 Å, is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores, thereby preventing the polysulphide dissolution. This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution, including the resulting parasitic reaction on the lithium anode. Further, the challenges that need to be addressed by UMC-S based Li-S batteries, and the strategies to realise high power density, high Coulombic efficiency, and resilient Li-S batteries will be discussed

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Probing BFKL Dynamics in the Dijet Cross Section at Large Rapidity Intervals in ppbar Collisions at sqrt{s}=1800 and 630 GeV

    Get PDF
    Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.Comment: Published in Physical Review Letter
    corecore