350 research outputs found

    Immunomodulatory properties of stem cells from human exfoliated deciduous teeth

    Get PDF
    Extent: 10p.Introduction: Stem cells from human exfoliated deciduous teeth (SHED) have been identified as a population of postnatal stem cells capable of differentiating into osteogenic and odontogenic cells, adipogenic cells, and neural cells. Herein we have characterized mesenchymal stem cell properties of SHED in comparison to human bone marrow mesenchymal stem cells (BMMSCs). Methods: We used in vitro stem cell analysis approaches, including flow cytometry, inductive differentiation, telomerase activity, and Western blot analysis to assess multipotent differentiation of SHED and in vivo implantation to assess tissue regeneration of SHED. In addition, we utilized systemic SHED transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results: We found that SHED are capable of differentiating into osteogenic and adipogenic cells, expressing mesenchymal surface molecules (STRO-1, CD146, SSEA4, CD73, CD105, and CD166), and activating multiple signaling pathways, including TGFβ, ERK, Akt, Wnt, and PDGF. Recently, BMMSCs were shown to possess an immunomodulatory function that leads to successful therapies for immune diseases. We examined the immunomodulatory properties of SHED in comparison to BMMSCs and found that SHED had significant effects on inhibiting T helper 17 (Th17) cells in vitro. Moreover, we found that SHED transplantation is capable of effectively reversing SLE-associated disorders in MRL/lpr mice. At the cellular level, SHED transplantation elevated the ratio of regulatory T cells (Tregs) via Th17 cells. Conclusions: These data suggest that SHED are an accessible and feasible mesenchymal stem cell source for treating immune disorders like SLE.Takayoshi Yamaza, Akiyama Kentaro, Chider Chen, Yi Liu, Yufang Shi, Stan Gronthos, Songlin Wang, Songtao Sh

    Stem Cell Property of Postmigratory Cranial Neural Crest Cells and Their Utility in Alveolar Bone Regeneration and Tooth Development

    Get PDF
    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-β signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures

    Effects of hyaluronan on carrageenan-induced synovitis in rat TMJ

    Get PDF
    Nitric oxide is one of many proinflammatory mediators that are involved in temporomandibular joint (TMJ) inflammatory disorder and is synthesized by inducible nitric oxide synthase (iNOS). iNOS is transcriptionally regulated by nuclear factor-κB (NF-κB) in cases of inflammation, proliferation, and apoptosis. It has also been reported that nitric oxide is positively regulated by carrageenan and negatively regulated by hyaluronan in the knee joint. The aim of this study was to histologically evaluate how inflammation and cell proliferation of the synovial membrane are affected by the exogenous administration of carrageenan and hyaluronan in the rat TMJ by investigating iNOS, NF-κB, and anti proliferating cell nuclear antigen (PCNA) immunoreactivity. As results, immunoreactive cells to iNOS, NF-κB, and PCNA were normally localized only in the synovial membrane of wild type TMJs. The numbers of immunoreactive cells were extensively larger in the carrageenan-injected synovial membranes exhibiting excessive folding, and smaller in the hyaluronan-injected synovial membranes showing a few folds. These results indicate that a carrageenan injection induced inflammation and cell proliferation especially in the synovial membrane and that hyaluronan relieved the inflammation by decreasing inflammatory molecules in the synovial membrane

    Characterization of Apical Papilla and its Residing Stem Cells from Human Immature Permanent Teeth –A Pilot Study

    Get PDF
    Mesenchymal stem cells (MSCs) have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells or DPSCs) and deciduous teeth (stem cells from human exfoliated deciduous teeth or SHED). We recently discovered another type of MSCs in the apical papilla of human immature permanent teeth termed stem cells from apical papilla (SCAP). Here we further characterized the apical papilla tissue and stem cell properties of SCAP using histological, immunohistochemical and immunocytofluorescent analyses. We found that apical papilla is distinctive to pulp in terms of containing less cellular and vascular components than those in pulp. Cells in apical papilla proliferated 2- to 3-fold greater than those in pulp in organ cultures. Both SCAP and DPSCs were as potent in osteo/dentinogenic differentiation as MSCs from bone marrows while weaker in adipogenic potential. The immunophenotype of SCAP is similar to that of DPSCs on the osteo/dentinogenic and growth factor receptor gene profiles. Double staining experiments showed that STRO-1 co-expressed with dentinogenic markers such as bone sialophosphoprotein (BSP), osteocalcin (OCN) and growth factors FGFR1 and TGFβRI in cultured SCAP. Additionally, SCAP express a wide variety of neurogenic markers such as nestin and neurofilament M upon stimulation with a neurogenic medium. We conclude that SCAP are similar to DPSCs but a distinct source of potent dental stem/progenitor cells. Their implications in root development and apexogenesis are discussed

    Mesenchymal Stem Cell-Mediated Ectopic Hematopoiesis Alleviates Aging-Related Phenotype in Immunocompromised Mice

    Get PDF
    Subcutaneous transplants of bone marrow mesenchymal stem cells (BMMSCs) are capable of generating ectopic bone and organizing functional hematopoietic marrow elements in animal models. Here we report that immunocompromised mice received subcutaneous BMMSC transplants using hydroxyapatite tricalcium phosphate as a carrier suppressed age- related degeneration in multiple organs and benefited an increase in life span extension compared with control litter- mates. The newly organized ectopic bone/ marrow system restores active hemato-poiesis via the erythropoietin receptor/ signal transducer and activator of transcription 5 (Stat5) pathway. Furthermore, the BMMSC recipient mice showed elevated level of Klotho and suppression of insulin-like growth factor I signaling, which may be the mechanism contributing to the alleviation of aging-like pheno-types and prolongation of life in the treated mice. This work reveals that erythropoietin receptor/Stat5 pathway contributes to BMMSC-organized ectopic hema-topoiesis, which may offer a treatment paradigm of reversing age-related degeneration of multiple organs in adult immunocompromised mice. © 2009 by The American Society of Hematology

    SHED Repair Critical-Size Calvarial Defects in Mice

    Get PDF
    OBJECTIVE Stem cells from human exfoliated deciduous teeth (SHED) are a population of highly proliferative postnatal stem cells capable of differentiating into odontoblasts, adipocytes, neural cells, and osteo-inductive cells. To examine whether SHED-mediated bone regeneration can be utilized for therapeutic purposes, we used SHED to repair critical-size calvarial defects in immuno-compromised mice. MATERIALS AND METHODS We generated calvarial defects and transplanted SHED with hydroxyapatite/ tricalcium phosphate as a carrier into the defect areas. RESULTS SHED were able to repair the defects with substantial bone formation. Interestingly, SHED-mediated osteogenesis failed to recruit hematopoietic marrow elements that are commonly seen in bone marrow mesenchymal stem cell-generated bone. Furthermore, SHED were found to co-express mesenchymal stem cell marker, CC9/MUC18/CD146, with an array of growth factor receptors such as transforming growth factor β receptor I and II, fibroblast growth factor receptor I and III, and vascular endothelial growth factor receptor I, implying their comprehensive differentiation potential. CONCLUSIONS Our data indicate that SHED, derived from neural crest cells, may select unique mechanisms to exert osteogenesis. SHED might be a suitable resource for orofacial bone regeneration

    Mesenchymal Stem Cell Transplantation Reverses Multi-Organ Dysfunction in Systemic Lupus Erythematosus Mice and Humans

    Get PDF
    Systemic Lupus Erythematosus (SLE) is a multisystem autoimmune disease that, despite the advances in immunosuppressive medical therapies, remains potentially fatal in some patients, especially in treatment-refractory patients. Here we reported that impairment of bone marrow mesenchymal stem cells (BMMSCs) and their associated osteoblastic niche deficiency contribute in part to the pathogenesis of SLE-like disease in MRL/lpr mice. Interestingly, allogenic BMMSC transplantation (MSCT) is capable of reconstructing the bone marrow osteoblastic niche and more effectively reverses multi-organ dysfunction as compared to medical immunosuppression with cyclophosphamide (CTX). At the cellular level, MSCT, not CTX treatment, was capable to induce osteoblastic niche reconstruction, possibly contributing to the recovery of regulatory T cells and re-establishment of the immune homeostasis. Based on the promising clinical outcomes in SLE mice, we treated 4 CTX/glucocorticoid treatment-refractory SLE patients using allogenic MSCT and showed a stable 12-18 months disease remission in all treated patients. The patients benefited an amelioration of disease activity, improvement in serologic markers and renal function. These early evidences suggest that allogenic MSCT may be a feasible and safe salvage therapy in refractory SLE patients
    corecore