167 research outputs found

    Metal-Oxo Photo-oxidants, Photochemistry and Photophysics of trans-[Os^(VI)(tmc)(O)_2]^(2+)(tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane) and trans-[Os^(VI)(CN)_4(O)_2]^(2-)

    Get PDF
    trans-[Os^(VI)(tmc)(O)_2]^(2+)(tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane) and trans-[Os^(VI)(CN)_4(O)_2]^(2-) are emissive in the solid state and in fluid solutions at room temperature (τ~ 1.0–1.5 µs); the (^3)E_g state of trans-[Os^(VI)(tmc)(O)_2]^(2+) is a powerful one-electron oxidant {[Os^(VI)(O)_2]^(2+) + e^– → [Os^V (O)_2]+, E^0_f > 2.0 V vs. normal hydrogen electrode} in aqueous solution, reacting with PPh3 and ((PhCH_2)_2)S to give O=PPh_3 and ((PhCH_2)_2)S=O, respectively

    High-valent ruthenium and osmium oxo complexes for homogeneous and photochemical oxidations of inorganic and organic substrates

    No full text
    published_or_final_versionChemistryDoctoralDoctor of Philosoph

    Photo- and Temperature-Induced Reversible Structural Transformation between Dodecanuclear and Pentadecanuclear Gold(I) Sulfido Complexes

    No full text
    Stimuli-responsive structural transformation has attracted much attention for its potential to mimic the behavior of biological transformations and functions. Here, two unprecedented dodecanuclear and pentadecanuclear gold(I) sulfido clusters (denoted trans-Au12 and trans-Au15, respectively) with impressive stimuli-responsive interconversion have been obtained by taking advantage of the judiciously designed tridentate phosphine ligand Ltrans as the building block. Both UV light and temperature can be applied to trigger the structural conversions between trans-Au12 and trans-Au15. In addition, NMR, high-resolution electrospray ionization mass spectrometry, and UV–vis absorption spectroscopy have been employed to monitor the transformation process and decipher the mechanism of structural conversion. This work not only provides a paradigm to investigate photo-induced cluster-to-cluster transformation based on polydentate phosphine ligands but also offers a new direction for the construction of the stimuli-responsive materials
    corecore