15 research outputs found

    Peptide nanofiber scaffolds for multipotent stromal cell culturing

    Get PDF
    Self-assembled peptide nanofibers are versatile materials providing suitable platforms for regenerative medicine applications. This chapter describes the use of peptide nanofibers as extracellular matrix mimetic scaffolds for two-dimensional (2D) and three-dimensional (3D) multipotent stromal cell culture systems and procedures for in vitro experiments using these scaffolds. Preparation of 2D and 3D peptide nanofiber scaffolds and cell culturing procedures are presented as part of in vitro experiments including cell adhesion, viability, and spreading analysis. Analysis of cellular differentiation on peptide nanofiber scaffolds is described through immunocytochemistry, qRT-PCR, and other biochemical experiments towards osteogenic and chondrogenic lineage. © Springer Science+Business Media New York 2013

    Enhanced proofreading governs CRISPR-Cas9 targeting accuracy

    No full text
    The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing1–4. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity were unknown5–9. Using single-molecule Förster resonance energy transfer (smFRET) experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state10 when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we designed a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing
    corecore