890 research outputs found
Analysis of Slab and Slab Heater Cover in a Compact Endless Cast and Rolling Mill Process using Finite Element Methods
Compact Endless cast and rolling Mill (CEM) processes were developed and used to fabricate steel products such as steel slabs. However, the coiling furnace in this process was very expensive, so a new layout was suggested. As the coiling furnace was removed, the interval among the slab heaters had to be increased. This led to a temperature drop in the slab. The temperature distribution of the slab impacts quality, so new layout was developed. This paper presents a Finite Element Method (FEM) simulation of thermal behavior in the slab employing slab heater covers. All of the simulation results were verified by comparing them with experimental results. The slab moving distance at which the temperature was saturated during the process was determined to consider the steady-state and analyze the temperature distribution of the slab and slab heater. Those results revealed that the efficiency of heat conservation increased by more than 50% using the slab heater cover. Finally, a sensitivity analysis of the slab heater cover was conducted with respect to the cover design. The effects of insulator thickness, the gap distance between the slab and cover, and material parameters such as density, and specific heat were investigated to optimize the design of the slab heater cover to produce the best quality slab.11Ysciescopuskc
Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells
<p>Abstract</p> <p>Background</p> <p>The regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. In order to characterize the effect of PKA type I and type II regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for RIα and RIIβ were stably transfected into cells of the ovarian cancer cell line (OVCAR8).</p> <p>Results</p> <p>RIα transfected cells exhibit hyper-proliferative growth and RIIβ transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RIα, RIIβ, and parental OVCAR cells. Genes specifically up-regulated in RIα cells were highly enriched for pathways involved in cell growth while genes up-regulated in RIIβ cells were enriched for pathways involved in differentiation. A large group of genes (~3600) was regulated along an axis of proliferation/differentiation between RIα, parental, and RIIβ cells. RIα/wt and RIIβ/wt gene regulation was shown by two separate and distinct gene set analytical methods to be strongly cross-correlated with a generic model of cellular differentiation.</p> <p>Conclusion</p> <p>Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically influences the cell phenotype. The proliferation phenotype is strongly correlated with recently identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible pivotal role for PKA regulation in disease progression.</p
Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic, and acute lymphocytic human leukemia cell lines.
Cyclic AMP (cAMP)-dependent protein kinase may play a role in the functional and morphological differentiation of leukemic cells. In this study, we showed that the cAMP analogs, potent activators of protein kinase recently shown to be selective for either site 1 or site 2 cAMP binding sites of protein kinase, demonstrate potent growth inhibition of acute promyelocytic, chronic myelocytic, and acute lymphocytic leukemic cell lines with no sign of toxicity. The growth inhibition accompanied monocytic differentiation in HL-60 cells and a loss of nuclear terminal deoxynucleotidyl transferase activity in Molt-4 leukemic cells. The growth inhibition also paralleled a decrease in c-myc protein and RI cAMP receptor protein. Thus, cAMP analogs selective for either site 1 or site 2 of the protein kinase appear to restore a coupling of proliferation and maturation in leukemic cells
Unhydrolyzable analogues of adenosine 3':5'-monophosphate demonstrating growth inhibition and differentiation in human cancer cells.
A set of adenosine 3':5'-monophosphate (cAMP) analogues that combine exocyclic sulfur substitutions in the equatorial (Rp) or the axial (Sp) position of the cyclophosphate ring with modifications in the adenine base of cAMP were tested for their effect on the growth of HL-60 human promyelocytic leukemia cells and LS-174T human colon carcinoma cells. Both diasteromeres of the phosphorothioate derivatives were growth inhibitory, exhibiting a concentration inhibiting 50% of cell proliferation of 3-100 microM. Among the analogues tested, Rp-8-Cl-cAMPS and Sp-8-Br-cAMPS were the two most potent. Rp-8-Cl-cAMPS was 5- to 10-fold less potent than 8-Cl-cAMP while Sp-8-Br-cAMPS was approximately 6-fold more potent than 8-Br-cAMP. The growth inhibition was not due to a block in a specific phase of the cell cycle or due to cytotoxicity. Rp-8-Cl-cAMPS enhanced its growth-inhibitory effect when added together with 8-Cl-cAMP and increased differentiation in combination with N6-benzyl-cAMP. The binding kinetics data showed that these Sp and Rp modifications brought about a greater decrease in affinity for Site B than for Site A of RI (the regulatory subunit of type I cAMP-dependent protein kinase) and a substantial decrease of affinity for Site A of RII (the regulatory subunit of type II protein kinase) but only a small decrease in affinity for Site B of RII, indicating the importance of the Site B binding of RII in the growth-inhibitory effect. These results show that the phosphorothioate analogues of cAMP are useful tools to investigate the mechanism of action of cAMP in growth control and differentiation and may have practical implication in the suppression of malignancy
An antisense oligodeoxynucleotide that depletes RI alpha subunit of cyclic AMP-dependent protein kinase induces growth inhibition in human cancer cells.
Enhanced expression of the RI alpha subunit of cyclic AMP-dependent protein kinase type I has been correlated with cancer cell growth. We provide evidence that RI alpha is a growth-inducing protein that may be essential for neoplastic cell growth. Human colon, breast, and gastric carcinoma and neuroblastoma cell lines exposed to a 21-mer human RI alpha antisense phosphorothioate oligodeoxynucleotide (S-oligodeoxynucleotide) exhibited growth inhibition with no sign of cytotoxicity. Mismatched sequence (random) S-oligodeoxynucleotides of the same length exhibited no effect. The growth inhibitory effect of RI alpha antisense oligomer correlated with a decrease in the RI alpha mRNA and protein levels and with an increase in RII beta (the regulatory subunit of protein kinase type II) expression. The growth inhibition was abolished, however, when cells were exposed simultaneously to both RI alpha and RII beta antisense S-oligodeoxynucleotides. The RII beta antisense S-oligodeoxynucleotide alone, exhibiting suppression of RII beta along with enhancement of RI alpha expression, led to slight stimulation of cell growth. These results demonstrate that two isoforms of cyclic AMP receptor proteins, RI alpha and RII beta, are reciprocally related in the growth control of cancer cells and that the RI alpha antisense oligodeoxynucleotide, which efficiently depletes the growth stimulatory RI alpha, is a powerful biological tool toward suppression of malignancy
A genome-wide association study implicates the pleiotropic effect of NMUR2 on asthma and COPD
Asthma and chronic obstructive pulmonary disease (COPD) are two distinct diseases that are associated with chronic inflammation. They share common features in terms of their advanced stages and genetic factors. This study aimed to identify novel genes underlying both asthma and COPD using genome-wide association study (GWAS) to differentiate between the two diseases. We performed a GWAS of asthma and COPD in 7828 Koreans from three hospitals. In addition, we investigated genetic correlations. The UK Biobank dataset was used for the replication studies. We found that rs2961757, located near neuromedin U receptor 2 (NMUR2) on chromosome 5, was genome-wide significant ([Formula: see text] = 0.44, P-valueAsthma-COPD = 3.41 × 10-8), and significant results were replicated with the UK Biobank data ([Formula: see text] = 0.04, P-valueAsthma-COPD = 0.0431). A positive genetic correlation was observed between asthma and COPD (39.8% in the Korean dataset and 49.8% in the UK Biobank dataset). In this study, 40-45% of the genetic effects were common to asthma and COPD. Moreover, NMUR2 increases the risk of asthma development and suppresses COPD development. This indicates that NMUR2 allows for better differentiation of both diseases, which can facilitate tailored medical therapy
Severity of Nonalcoholic Fatty Liver Disease is Associated with Development of Metabolic Syndrome: Results of a 5-Year Cohort Study
Aims: Nonalcoholic fatty liver disease (NAFLD) is considered to be a hepatic manifestation of metabolic syndrome (MS).
However, a few studies have examined the effect of NAFLD on the development of MS. We evaluated the relationship
between the development of MS and clinical severity of NAFLD according to alanine aminotransferase (ALT) levels.
Methods: A retrospective cohort study was conducted. Participants who underwent abdominal ultrasonography and blood
samplings for health check-ups both in 2005 and 2010 were recruited. NAFLD was diagnosed if a person showed fatty liver
on ultrasonography without significant alcohol consumption. Subjects with MS at baseline were excluded.
Results: A total of 2,728 subjects met the inclusion criteria. Fatty liver (FL) with normal ALT was found in 369 (13.5%)
subjects and FL with elevated ALT in 328 (12.0%). During 5 years of follow up, 582 (21.3%) incident cases of MS developed
between 2005 and 2010. The incidence of MS was higher in patients with NAFLD compared to control group (41.2%
in FL with elevated ALT, 34.7% in FL with normal ALT and 15.7% in control, p<0.001). Multivariate analysis showed that
odds ratio (OR) and 95% confidence interval (CI) for MS increased according to the severity of NAFLD [OR (95% CI),
1.29 (0.97−1.71) in FL with normal ALT and 1.54 (1.18−1.33) in FL with elevated ALT, p=0.01].
Conclusions: We have demonstrated that development of MS is significantly increased according to the clinical severity of
NAFLD. These findings have implications in the clinical availability of NAFLD as a predictor of MS
Site-selective cyclic AMP analogs provide a new approach in the control of cancer cell growth
Site-selective cyclic AMP analogs bind to site 1 or site 2 of the known cAMP-binding sites depending on the position of substituents on the purine ring, either at C-2 and C-8 (site 1) or at C-6 (site 2). The growth inhibitory effect of such site-selective cAMP analogs used in this investigation with 15 human cancer cell lines surpassed that of analogs previously tested. The most potent analogs were 8-chloro, N6-benzyl and N6-phenyl-8-p-chlorophenylthio-cAMP. The combination of a C-8 with an N6 analog had synergistic effects. The 24 site-selective analogs tested produced growth inhibition ranging from 30 to 80% at micromolar concentrations with no sign of toxic effects. Growth inhibition was not due to a block in a specific phase of the cell cycle but paralleled a change in cell morphology, an increase of the RII cAMP receptor protein and a decrease of p21 ras protein. Since the adenosine counterpart of the 8-chloro analog produced G1 synchronization without affecting the RII and p21 ras protein levels, it is unlikely that an adenosine metabolite is involved in the analog effect. Site-selective cAMP analogs thus provide a new biological tool for control of cancer growth
Induction of megakaryocytic differentiation and modulation of protein kinase gene expression by site-selective cAMP analogs in K-562 human leukemic cells.
Two classes (site 1- and site 2-selective) of cAMP analogs, which either alone or in combination demonstrate a preference for binding to type II rather than type I cAMP-dependent protein kinase isozyme, potently inhibit growth in a spectrum of human cancer cell lines in culture. Treatment of K-562 human leukemic cells for 3 days with 30 and 10 microM 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) (site 1-selective) resulted in 60% and 20% growth inhibition, respectively (with over 90% viability). N6-Benzyl-cAMP (site 2-selective) (30 microM) treatment resulted in 20% growth inhibition by day 3. When 8-Cl-cAMP (10 microM) and N6-benzyl-cAMP (30 microM) were both added, growth was almost completely arrested. The growth inhibition was accompanied by megakaryocytic differentiation in K-562 cells. The untreated control cells expressed little or no detectable levels of glycoprotein IIb-IIIa surface antigen complex. 8-Cl-cAMP (30 microM) treatment for 3 days substantially increased the antigen expression, while N6-benzyl-cAMP caused little or no change in the antigen expression. When cells were treated with 8-Cl-cAMP in combination with N6-benzyl-cAMP, antigen expression was synergistically enhanced, and cells demonstrated megakaryocyte morphology. By Northern blotting, we examined the mRNA levels of the type I and type II protein kinase regulatory subunits (RI alpha and RII beta), the catalytic subunit, and c-myc during 8-Cl-cAMP treatment. The steady-state level of RII beta cAMP receptor mRNA sharply increased within 1 hr of treatment and remained elevated for 3 days, while that of the RI alpha receptor markedly decreased to below control level within 6 hr and remained low during treatment. However, 8-Cl-cAMP did not affect the mRNA level of the catalytic subunit. 8-Cl-cAMP treatment also brought about a rapid decrease in c-myc mRNA. Thus, differential regulation of cAMP receptor genes is an early event in cAMP-induced differentiation and growth control of K-562 leukemia cells
- …