14 research outputs found

    Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task

    Get PDF
    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error

    The Influence of Recovery and Training Phases on Body Composition, Peripheral Vascular Function and Immune System of Professional Soccer Players

    Get PDF
    Professional soccer players have a lengthy playing season, throughout which high levels of physical stress are maintained. The following recuperation period, before starting the next pre-season training phase, is generally considered short but sufficient to allow a decrease in these stress levels and therefore a reduction in the propensity for injury or musculoskeletal tissue damage. We hypothesised that these physical extremes influence the body composition, blood flow, and endothelial/immune function, but that the recuperation may be insufficient to allow a reduction of tissue stress damage. Ten professional football players were examined at the end of the playing season, at the end of the season intermission, and after the next pre-season endurance training. Peripheral blood flow and body composition were assessed using venous occlusion plethysmography and DEXA scanning respectively. In addition, selected inflammatory and immune parameters were analysed from blood samples. Following the recuperation period a significant decrease of lean body mass from 74.4±4.2 kg to 72.2±3.9 kg was observed, but an increase of fat mass from 10.3±5.6 kg to 11.1±5.4 kg, almost completely reversed the changes seen in the pre-season training phase. Remarkably, both resting and post-ischemic blood flow (7.3±3.4 and 26.0±6.3 ml/100 ml/min) respectively, were strongly reduced during the playing and training stress phases, but both parameters increased to normal levels (9.0±2.7 and 33.9±7.6 ml/100 ml/min) during the season intermission. Recovery was also characterized by rising levels of serum creatinine, granulocytes count, total IL-8, serum nitrate, ferritin, and bilirubin. These data suggest a compensated hypo-perfusion of muscle during the playing season, followed by an intramuscular ischemia/reperfusion syndrome during the recovery phase that is associated with muscle protein turnover and inflammatory endothelial reaction, as demonstrated by iNOS and HO-1 activation, as well as IL-8 release. The data provided from this study suggest that the immune system is not able to function fully during periods of high physical stress. The implications of this study are that recuperation should be carefully monitored in athletes who undergo intensive training over extended periods, but that these parameters may also prove useful for determining an individual's risk of tissue stress and possibly their susceptibility to progressive tissue damage or injury

    High-intensity intermittent exercise and cardiovascular and autonomic function

    Full text link
    Objective: The effect of 12 weeks of high-intensity intermittent exercise (HIIE) on cardiac, vascular, and autonomic function of young males was examined. Methods: Thirty-eight young men with a BMI of 28.7 ± 3.1 kg m -2 and age 24.9 ± 4.3 years were randomly assigned to either an HIIE or control group. The exercise group underwent HIIE three times per week, 20 min per session, for 12 weeks. Aerobic power and a range of cardiac, vascular, and autonomic measures were recorded before and after the exercise intervention. Results: The exercise, compared to the control group, recorded a significant reduction in heart rate accompanied by an increase in stroke volume. For the exercise group forearm vasodilatory capacity was significantly enhanced, P < 0.05. Arterial stiffness, determined by pulse wave velocity and augmentation index, was also significantly improved, after the 12-week intervention. For the exercise group, heart period variability (low- and high-frequency power) and baroreceptor sensitivity were significantly increased. Conclusion: High-intensity intermittent exercise induced significant cardiac, vascular, and autonomic improvements after 12 weeks of training. © 2012 Springer-Verlag Berlin Heidelberg

    The effects of high-intensity intermittent exercise training on cardiovascular response to mental and physical challenge

    Full text link
    The purpose was to examine the effect of a 12-week exercise intervention on the cardiovascular and autonomic response of males to mental and physical challenge. Thirty four young overweight males were randomly assigned to either an exercise or control group. The exercise group completed a high-intensity intermittent exercise (HIIE) program three times per week for 12. weeks. Cardiovascular response to the Stroop task was determined before and after the intervention by assessing heart rate (HR), stroke volume (SV), arterial stiffness, baroreflex sensitivity (BRS), and skeletal muscle blood flow. The exercise group improved their aerobic fitness levels by 17% and reduced their body weight by 1.6. kg. Exercisers compared to controls experienced a significant reduction in HR (p<. 0.001) and a significant increase in SV (p<. 0.001) at rest and during Stroop and exercise. For exercisers, arterial stiffness significantly decreased at rest and during Stroop (p<. 0.01), whereas BRS was increased at rest and during Stroop (p<. 0.01). Forearm blood flow was significantly increased during the first two minutes of Stroop (p<. 0.05). HIIE induced significant cardiovascular and autonomic changes at rest and during mental and physical challenge after 12. weeks of training. © 2013 Elsevier B.V
    corecore