3,218 research outputs found

    Reconfigurable partially reflective surface antennas

    Full text link
    © 2017 IEEE. In this paper, the research of reconfigurable partially reflective surface (PRS) antennas at University of Technology Sydney (UTS) is introduced. Two reconfigurable PRS antennas are described that can achieve beam scanning and wideband polarization switch, respectively

    A reconfigurable beam-scanning partially reflective surface (PRS) antenna

    Full text link
    © 2015 EurAAP. A novel reconfigurable partially reflective surface (PRS) antenna is presented in this paper. The beam scanning ability is realized by employing a reconfigurable PRS structure and a phased array as the source. The design achieves a beam switching between -15°, 0°, to 15° with respect to the broadside direction from 5.5 GHz to 5.7 GHz with the realized gains over 12 dBi. Good agreement between the simulated and measured results is achieved

    A wideband polarization reconfigurable antenna for WLAN applications

    Full text link
    © 2016 European Association of Antennas and Propagation. This paper proposes a wideband polarization reconfigurable antenna design for WLAN applications. It consists of a shorted annular patch (SAP) antenna as the source, a partially reflective surface (PRS) structure to enhance the gain, and a reconfigurable Wilkinson power divider as the feed network. The antenna can electronically alter its polarization between linear polarization (LP), left-hand circular polarization (LHCP), and right-hand circular polarization (RHCP),achieving an overlapped 10dB impedance bandwidth and 3 dB axial-ratio bandwidth of 4.68-5.33 GHz (13%), thus outperforming most of the reported polarization reconfigurable antennas in terms of the frequency bandwidth

    Wideband feeding method for full-wave dipole

    Full text link
    © 2017 IEEE. This paper introduces a wide-band feeding method for full-wave dipole antennas. A full-wave dipole is designed to cover the band from 698 MHz to 960 MHz for cellular base station applications. Its matching circuit consists of a laddertype filter design and a quasi-quarter-wavelength resistance transformer. The proposed matching circuit can provide balanced feeding as a balun and has a compact size. The matching circuit is designed and optimized using a circuit theory model and then physically realized using microstrip lines based on full-wave simulation. The simulated reflection coefficient |S11| is < -15 dB across the entire target band, exhibiting a bandwidth of 32%

    Penetration Enhancement Effect of Turpentine Oil on Transdermal Film of Ketorolac

    Get PDF
    Purpose: To prepare transdermal films of ketorolac tromethamine (KT) and study the effect of turpentine oil as a penetration enhancer for the drug.Methods: Transdermal films of KT were prepared with Carbopol-934 and ethyl cellulose, with turpentine oil as the penetration enhancer, using solvent evaporation method. The films were characterized for physicochemical properties, ex vivo permeation, as well as in vivo anti-inflammatory and analgesic activities in Wistar rats. Results: The transdermal films were uniform in weight and thickness, flat, with high drug content (93.9 to 98.5 %) and of high folding endurance (134.0 to 180.0). Drug permeation through excised rat abdominal skin was prolonged, with the total drug release ranging from 58.88 to 88.98 % in 24 h. The films containing penetration enhancer showed higher drug permeation than the one without the enhancer; furthermore, drug permeation increased with increase in the concentration of the enhancer. The films were non-irritant to the skin. The transdermal films prepared with permeation enhancers showed greater anti-inflammatory activity (87.55 ± 2.50 and 83.24 ± 2.29 % inhibition of rat paw edema at the end of 12 h for formulations F2 and F3, respectively, compared to that of the formulation without enhancer with 69.99 %) as well as greater analgesic activity (quicker onset of analgesia in 1.5 h with longer duration of 10 to 12 h).Conclusion: Transdermal films of ketorolac have a potential for use in the treatment of pain andinflammation. Incorporation of turpentine oil in the films enhances not only drug flux but also analgesic and anti-inflammatory activities in rats

    Reorganization of the Neurobiology of Language After Sentence Overlearning

    Get PDF
    It is assumed that there are a static set of “language regions” in the brain. Yet, language comprehension engages regions well beyond these, and patients regularly produce familiar “formulaic” expressions when language regions are severely damaged. These suggest that the neurobiology of language is not fixed but varies with experiences, like the extent of word sequence learning. We hypothesized that perceiving overlearned sentences is supported by speech production and not putative language regions. Participants underwent 2 sessions of behavioral testing and functional magnetic resonance imaging (fMRI). During the intervening 15 days, they repeated 2 sentences 30 times each, twice a day. In both fMRI sessions, they “passively” listened to those sentences, novel sentences, and produced sentences. Behaviorally, evidence for overlearning included a 2.1-s decrease in reaction times to predict the final word in overlearned sentences. This corresponded to the recruitment of sensorimotor regions involved in sentence production, inactivation of temporal and inferior frontal regions involved in novel sentence listening, and a 45% change in global network organization. Thus, there was a profound whole-brain reorganization following sentence overlearning, out of “language” and into sensorimotor regions. The latter are generally preserved in aphasia and Alzheimer’s disease, perhaps explaining residual abilities with formulaic expressions in both

    The effect of Matmo typhoon on mixed zone between the Yellow sea and Bohai sea

    Get PDF
    The results of remote sensing, buoy and profile based on measured data indicate that the wind speed, H-1/3 and salinity increased, sea surface temperature declined, and wind direction changed greatly during the transit of the Matmo typhoon on July 25. It was found that the typhoon transport the Yellow Sea Cold Water Mass into the the Yellow and Bohai seas mixed zone

    Agrobacterium-mediated genetic transformation of Miscanthus sinensis

    Get PDF
    Miscanthus species are tall perennial rhizomatous grasses with C4 photosynthesis originating from East Asia, and they are considered as important bioenergy crops for biomass production. In this study, Agrobacterium-mediated transformation system for M. sinensis was developed using embryogenic calli derived from mature seeds. In order to establish a stable system, optimum conditions to obtain highly regenerable and transformation-competent embryogenic calli were investigated, and embryogenic calli were efficiently induced with callus induction medium containing 3 mg L-1 2,4-dichlorophenoxyacetic acid and 25 mM l-proline, at pH 5.7 with an induction temperature of 28 A degrees C. In addition, the embryogenic callus induction and regeneration potentials were compared between seven M. sinensis germplasms collected from several sites in Korea, which revealed that the germplasm SNU-M-045 had superior embryogenic callus induction and regeneration potentials. With this germplasm, the genetic transformation of M. sinensis was performed using Agrobacterium tumefaciens EHA105 carrying pCAMBIA1300 with a green fluorescence protein gene as a reporter. After putative transgenic plants were obtained, the genomic integration of transgenes was confirmed by genomic PCR, transgene expression was validated by Northern blot analysis, and the number of transgene integration was confirmed by DNA gel blot analysis. Furthermore, the Agrobacterium-mediated transformation of M. sinensis was also performed with pCAMBIA3301 which contains an herbicide resistance gene (BAR), and we obtained transgenic M. sinensis plants whose herbicide resistance was confirmed by spraying with BASTA(A (R)). Therefore, we have established a stable Agrobacterium-mediated transformation system for M. sinensis, and also successfully produced herbicide-resistant Miscanthus plants by introducing BAR gene via the established method.X111210Ysciescopu

    Valley-Polarized Interlayer Conduction of Anisotropic Dirac Fermions in SrMnBi2

    Get PDF
    We report the valley-selective interlayer conduction of SrMnBi2 under in-plane magnetic fields. The c-axis resistivity of SrMnBi2 shows clear angular magnetoresistance oscillations indicating coherent interlayer conduction. Strong fourfold variation of the coherent peak in the c-axis resistivity reveals that the contribution of each Dirac valley is significantly modulated by the in-plane field orientation. This originates from anisotropic Dirac Fermi surfaces with strong disparity in the momentum-dependent interlayer coupling. Furthermore, we found a signature of broken valley symmetry at high magnetic fields. These findings demonstrate that a quasi-two-dimensional anisotropic Dirac system can host a valley-polarized interlayer current through magnetic valley control. &amp;#169; 2014 American Physical Society.open1

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone
    corecore