422 research outputs found

    Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses

    Full text link
    In the present paper, we develop a semiclassical quasi-static model accounting for molecular double ionization in an intense laser pulse. With this model, we achieve insight into the dynamics of two highly-correlated valence electrons under the combined influence of a two-center Coulomb potential and an intense laser field, and reveal the significant influence of molecular alignment on the ratio of double over single ion yield. Analysis on the classical trajectories unveils sub-cycle dynamics of the molecular double ionization. Many interesting features, such as the accumulation of emitted electrons in the first and third quadrants of parallel momentum plane, the regular pattern of correlated momentum with respect to the time delay between closest collision and ionization moment, are revealed and successfully explained by back analyzing the classical trajectories. Quantitative agreement with experimental data over a wide range of laser intensities from tunneling to over-the-barrier regime is presented.Comment: 8 pages, 9 figure

    Aharonov-Bohm Oscillation and Chirality Effect in Optical Activity of Single Wall Carbon Nanotubes

    Full text link
    We study the Aharonov-Bohm effect in the optical phenomena of single wall carbon nanotubes (SWCN) and also their chirality dependence. Specially, we consider the natural optical activity as a proper observable and derive it's general expression based on a comprehensive symmetry analysis, which reveals the interplay between the enclosed magnetic flux and the tubule chirality for arbitrary chiral SWCN. A quantitative result for this optical property is given by a gauge invariant tight-binding approximation calculation to stimulate experimental measurements.Comment: Submitted on 15 Jan 04, REVISED on 28 Apr 04, To appear in Phys. Rev. B(Brief Report

    Rosen-Zener Transition in a Nonlinear Two-Level System

    Full text link
    We study Rosen-Zener transition (RZT) in a nonlinear two-level system in which the level energies depend on the occupation of the levels, representing a mean-field type of interaction between the particles. We find that the nonlinearity could affect the quantum transition dramatically. At certain nonlinearity the 100% population transfer between two levels is observed and found to be robust over a very wide range of external parameters. On the other hand, the quantum transition could be completely blocked by a strong nonlinearity. In the sudden and adiabatic limits we have derived analytical expressions for the transition probability. Numerical explorations are made for a wide range of parameters of the general case. Possible applications of our theory to Bose-Einstern Condensates (BECs) are discussed.Comment: 8 pages, 8 figure

    Landau-Zener Tunnelling in a Nonlinear Three-level System

    Full text link
    We present a comprehensive analysis of the Landau-Zener tunnelling of a nonlinear three-level system in a linearly sweeping external field. We find the presence of nonzero tunnelling probability in the adiabatic limit (i.e., very slowly sweeping field) even for the situation that the nonlinear term is very small and the energy levels keep the same topological structure as that of linear case. In particular, the tunnelling is irregular with showing an unresolved sensitivity on the sweeping rate. For the case of fast-sweeping fields, we derive an analytic expression for the tunnelling probability with stationary phase approximation and show that the nonlinearity can dramatically influence the tunnelling probability when the nonlinear "internal field" resonate with the external field. We also discuss the asymmetry of the tunnelling probability induced by the nonlinearity. Physics behind the above phenomena is revealed and possible application of our model to triple-well trapped Bose-Einstein condensate is discussed.Comment: 8 pages, 8 figure

    The Deformation of an Elastic Substrate by a Three-Phase Contact Line

    Full text link
    Young's classic analysis of the equilibrium of a three-phase contact line ignores the out-of-plane component of the liquid-vapor surface tension. While it has long been appreciated that this unresolved force must be balanced by elastic deformation of the solid substrate, a definitive analysis has remained elusive because conventional idealizations of the substrate imply a divergence of stress at the contact line. While a number of theories of have been presented to cut off the divergence, none of them have provided reasonable agreement with experimental data. We measure surface and bulk deformation of a thin elastic film near a three-phase contact line using fluorescence confocal microscopy. The out-of-plane deformation is well fit by a linear elastic theory incorporating an out-of-plane restoring force due to the surface tension of the gel. This theory predicts that the deformation profile near the contact line is scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure

    Photoassociation adiabatic passage of ultracold Rb atoms to form ultracold Rb_2 molecules

    Full text link
    We theoretically explore photoassociation by Adiabatic Passage of two colliding cold ^{85}Rb atoms in an atomic trap to form an ultracold Rb_2 molecule. We consider the incoherent thermal nature of the scattering process in a trap and show that coherent manipulations of the atomic ensemble, such as adiabatic passage, are feasible if performed within the coherence time window dictated by the temperature, which is relatively long for cold atoms. We show that a sequence of ~2*10^7 pulses of moderate intensities, each lasting ~750 ns, can photoassociate a large fraction of the atomic ensemble at temperature of 100 microkelvin and density of 10^{11} atoms/cm^3. Use of multiple pulse sequences makes it possible to populate the ground vibrational state. Employing spontaneous decay from a selected excited state, one can accumulate the molecules in a narrow distribution of vibrational states in the ground electronic potential. Alternatively, by removing the created molecules from the beam path between pulse sets, one can create a low-density ensemble of molecules in their ground ro-vibrational state.Comment: RevTex, 23 pages, 9 figure

    Method to determine defect positions below a metal surface by STM

    Get PDF
    The oscillatory voltage dependence of the conductance of a quantum point contact in the presence of a single point-like defect has been analyzed theoretically. Such signals are detectable and may be exploited to obtain information on defect positions below a metal surface. Both tunnel junctions and ballistic contacts of adiabatic shape have been considered. The effect of quantum interference has been taking into account between the principal wave that is directly transmitted through the contact and the partial wave that is scattered by the contact and the defect. This effect leads to oscillations of the conductance as a function of applied voltage. We obtain the dependence of the period and amplitude of the conductance oscillations on the position of the defect inside the metal.Comment: 16 pages, 7 figure

    The role of particle interactions in a many-body model of Feshbach molecular formation in bosonic systems

    Full text link
    In this paper, we investigate the atom-molecule conversion dynamics of a generalized many-body model that includes the atom-atom, atom-molecule, and molecule-molecule interactions, emphasizing the efficiency of the Feshbach molecular formation. We show that the picture of two-body molecular production depicted by the Landau-Zener model is significantly altered: The energy levels are dramatically distorted and the conversion efficiency is suppressed by the particle interactions. According to the rule of constant action and with the help of phase-space analysis, we derive an analytical expression for the conversion efficiency in the adiabatic limit. It shows a ceiling for the conversion efficiency when the interaction strength is larger than a critical value. We further derive a closed equation for the conversion efficiency with the stationary phase approximation. In the sudden limit, the conversion efficiency is twice that predicted by the two-body Landau-Zener formula. Our analytical formula has been confirmed by numerical calculations.Comment: 7 pages, 5 figure

    A Model for the Propagation of Sound in Granular Materials

    Full text link
    This paper presents a simple ball-and-spring model for the propagation of small amplitude vibrations in a granular material. In this model, the positional disorder in the sample is ignored and the particles are placed on the vertices of a square lattice. The inter-particle forces are modeled as linear springs, with the only disorder in the system coming from a random distribution of spring constants. Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in measurements of sound propagation in a granular system. In order to understand this behavior, the role of the resonance modes of the system is investigated. Finally, this simple model is generalized to include relaxation behavior in the force network -- a behavior which is also seen in real granular materials. This model gives quantitative agreement with experimental observations of relaxation.Comment: 21 pages, requires Harvard macros (9/91), 12 postscript figures not included, HLRZ preprint 6/93, (replacement has proper references included

    Chaos in generalized Jaynes-Cummings model. Kinetic approach

    Full text link
    In this work we study possibility of chaos formation in the dynamics governed by paradigmatic model of Cavity Quantum Electrodynamics, the so called James-Cammings model. In particular we consider generalized JC model. It is shown that even in the case of zero detuning dynamics is chaotic. Kinetic approach for the problem under study has been applied
    • …
    corecore