1,815 research outputs found

    A local moments estimation of the spectrum of a large dimensional covariance matrix

    Get PDF
    This paper considers the problem of estimating the population spectral distribution from a sample covariance matrix when its dimension is large. We generalize the contour-integral based method in Mestre (2008) and present a local moment estimation procedure. Compared with the original, the new procedure can be applied successfully to models where the asymptotic clusters of sample eigenvalues generated by different population eigenvalues are not all separate. The proposed estimates are proved to be consistent. Numerical results illustrate the implementation of the estimation procedure and demonstrate its efficiency in various cases.postprin

    Use of plant epidermis for determination of macrophytes consumed by Distichodus rostratus Günther, 1864 (Pisces : Distichodontidae), of Taabo artificial lake (Basin of Bandama, Côte d’Ivoire).

    Get PDF
    Fish constitutes one of the principal sources of proteins in the majority of African countries such as Côte d'Ivoire. However, its production is subjected to various constraints primarily of nutritional nature. This study was initiated to determine the plant base diet of local fish Distichodus rostratus for its valorisation in aquaculture. The micro-histological method was applied to the stomach contents and aquatic plants inventoried in Ahondo (Taabo Lake) in order to determine floristic composition of consumed food by D. rostratus. After treatment in sodium hypochlorite, the epidermis of plants were observed using an optic microscope and compared. The results revealed that the plant species consumed by this Fish species were, essentially, Ipomoea aquatica, Echinochloa pyramidalis, Polygonum senegalense and Pycreus macrostachys.Keywords : Distichodus rostratus, diet, epidermis, Aquatic plants, Macrophytis

    QCD Approach to B->D \pi Decays and CP Violation

    Full text link
    The branching ratios and CP violations of the B→DπB\to D\pi decays, including both the color-allowed and the color-suppressed modes, are investigated in detail within QCD framework by considering all diagrams which lead to three effective currents of two quarks. An intrinsic mass scale as a dynamical gluon mass is introduced to treat the infrared divergence caused by the soft collinear approximation in the endpoint regions, and the Cutkosky rule is adopted to deal with a physical-region singularity of the on mass-shell quark propagators. When the dynamical gluon mass μg\mu_g is regarded as a universal scale, it is extracted to be around μg=440\mu_g = 440 MeV from one of the well-measured B→DπB\to D\pi decay modes. The resulting predictions for all branching ratios are in agreement with the current experimental measurements. As these decays have no penguin contributions, there are no direct CPCP asymmetries. Due to interference between the Cabibbo-suppressed and the Cabibbo-favored amplitudes, mixing-induced CP violations are predicted in the B→D±π∓B\to D^{\pm}\pi^{\mp} decays to be consistent with the experimental data at 1-σ\sigma level. More precise measurements will be helpful to extract weak angle 2β+γ2\beta+\gamma.Comment: 21pages,5 figures,3 tables, typos corrected and numerical result for one of decay channels is improve

    Experimental Tests of General Relativity

    Full text link
    Einstein's general theory of relativity is the standard theory of gravity, especially where the needs of astronomy, astrophysics, cosmology and fundamental physics are concerned. As such, this theory is used for many practical purposes involving spacecraft navigation, geodesy, and time transfer. Here I review the foundations of general relativity, discuss recent progress in the tests of relativistic gravity in the solar system, and present motivations for the new generation of high-accuracy gravitational experiments. I discuss the advances in our understanding of fundamental physics that are anticipated in the near future and evaluate the discovery potential of the recently proposed gravitational experiments.Comment: revtex4, 30 pages, 10 figure

    Dynamical coupled-channels: the key to understanding resonances

    Full text link
    Recent developments on a dynamical coupled-channels model of hadronic and electromagnetic production of nucleon resonances are summarized.Comment: Invited Plenary talk at the 20th European Conference on Few-Body Problems in Physics (EFB20), September 10-14 2007, Pisa, Italy. To appear in the proceedings in Few-Body System

    The Exotic XYZ Charmonium-like Mesons

    Full text link
    Charmonium, the spectroscopy of c\bar{c} mesons, has recently enjoyed a renaissance with the discovery of several missing states and a number of unexpected charmonium-like resonances. The discovery of these new states has been made possible by the extremely large data samples made available by the B-factories at the Stanford Linear Accelerator Center and at KEK in Japan, and at the CESR e^+e^- collider at Cornell. Conventional c\bar{c} states are well described by quark potential models. However, many of these newly discovered charmonium-like mesons do not seem to fit into the conventional c\bar{c} spectrum. There is growing evidence that at least some of these new states are exotic, i.e. new forms of hadronic matter such as mesonic-molecules, tetraquarks, and/or hybrid mesons. In this review we describe expectations for the properties of conventional charmonium states and the predictions for molecules, tetraquarks and hybrids and the various processes that can be used to produce them. We examine the evidence for the new candidate exotic mesons, possible explanations, and experimental measurements that might shed further light on the nature these states.Comment: 28 pages, 7 figures. Review for Ann Rev Nucl & Part Sc

    Observation of anomalous decoherence effect in a quantum bath at room temperature

    Get PDF
    Decoherence of quantum objects is critical to modern quantum sciences and technologies. It is generally believed that stronger noises cause faster decoherence. Strikingly, recent theoretical research discovers the opposite case for spins in quantum baths. Here we report experimental observation of the anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that under dynamical decoupling, the double-transition can have longer coherence time than the single-transition, even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and the theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557

    Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling

    Get PDF
    Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.published_or_final_versio

    Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling

    Get PDF
    Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.published_or_final_versio

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil
    • …
    corecore