3,543 research outputs found

    Particle decay in the early universe: predictions for 21 cm

    Full text link
    The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark matter particles on the emission and absorption characteristics of neutral hydrogen in 21 cm at redshifts z=1050z = 10-50 is considered. In presence of UHECRs 21 cm can be seen in absorption with the brightness temperature Tb=(510)T_b=-(5-10) mK in the range z=1030z=10-30. Decayng particles can stimulate a 21 cm signal in emission with Tb5060T_b\sim 50-60 mK at z=50z =50, and Tb10T_b \simeq 10 mK at z20z \sim 20. Characteristics of the fluctuations of the brightness temperature, in particular, its power spectrum are also calculated. The maps of the power spectrum of the brightness temperature on the plane {\it wavenumber-redshift} are shown to be sensitive to the parameters of UHECRs and decaying dark matter. Observational possibilities to detect manifestations of UHECRs and/or decaying particles in 21 cm with the future radio telescopes (LOFAR, 21CMA and SKA), and to distinguish contributions from them are briefly discussed.Comment: 10 pages, 9 figures, accepted in MNRA

    Lagrange Anchor for Bargmann-Wigner equations

    Full text link
    A Poincare invariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s > 1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law.Comment: A contribution to Proceedings of the XXXI Workshop on the Geometric Methods in Physic

    Gravitational cubic interactions for a massive mixed symmetry gauge field

    Full text link
    In a recent paper arXiv:1107.1872 cubic gravitational interactions for a massless mixed symmetry field in AdS space have been constructed. In the current paper we extend these results to the case of massive field. We work in a Fradkin-Vasiliev approach and use frame-like gauge invariant description for massive field which works in (A)dS spaces with arbitrary values of cosmological constant including flat Minkowski space. In this, massless limit in AdS space coincides with the results of arXiv:1107.1872 while we show that it is impossible to switch on gravitational interaction for massless field in dS space.Comment: 13 page

    Cold Collision Frequency Shift in Two-Dimensional Atomic Hydrogen

    Full text link
    We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid 4He at T<=90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta v_c = -1.0(1)x10^-7 Hz cm^-2 x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the 3D case.Comment: 4 pages, 3 figure

    Magnetotransport properties of FeSe in fields up to 50T

    Full text link
    Magnetotransport properties of the high-quality FeSe crystal, measured in a wide temperature range and in magnetic fields up to 50 T, show the symmetry of the main holelike and electronlike bands in this compound. In addition to the main two bands, there is also a tiny, highly mobile, electronlike band which is responsible for the non-linear behavior of ρxy\rho_{xy}(B) at low temperatures and some other peculiarities of FeSe. We observe the inversion of the ρxx\rho_{xx} temperature coeficient at a magnetic field higher than about 20 T which is an implicit conformation of the electron-hole symmetry in the main bands.Comment: MISM 201

    Higher Spins from Tensorial Charges and OSp(N|2n) Symmetry

    Full text link
    It is shown that the quantization of a superparticle propagating in an N=1, D=4 superspace extended with tensorial coordinates results in an infinite tower of massless spin states satisfying the Vasiliev unfolded equations for free higher spin fields in flat and AdS_4 N=1 superspace. The tensorial extension of the AdS_4 superspace is proved to be a supergroup manifold OSp(1|4). The model is manifestly invariant under an OSp(N|8) (N=1,2) superconformal symmetry. As a byproduct, we find that the Cartan forms of arbitrary Sp(2n) and OSp(1|2n) groups are GL(2n) flat, i.e. they are equivalent to flat Cartan forms up to a GL(2n) rotation. This property is crucial for carrying out the quantization of the particle model on OSp(1|4) and getting the higher spin field dynamics in super AdS_4, which can be performed in a way analogous to the flat case.Comment: LaTeX, 21 page (JHEP style), misprints corrected, added comments on the relation of results of hep-th/0106149 with hep-th/9904109 and hep-th/9907113, references adde

    Highly mobile carriers in orthorhombic phases of iron-based superconductors FeSe1x{}_{1-x}Sx{}_{x}

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been measured for FeSe1x{}_{1-x}Sx{}_{x} (x=0.04, 0.09 and 0.19) single crystals. The sample FeSe0.81{}_{0.81}S0.19{}_{0.19} does not show a transition to an orthorhombic phase and exhibits at low temperatures the transport properties quite different from those of orthorhombic samples. The behavior of FeSe0.81{}_{0.81}S0.19{}_{0.19} is well described by the simple two band model with comparable values of hole and electron mobility. In particular, at low temperatures the transverse resistance shows a linear field dependence, the magnetoresistance follow a quadratic field dependence and obeys to Kohler's rule. In contrast, Kohler's rule is strongly violated for samples having an orthorhombic low temperature structure. However, the transport properties of the orthorhombic samples can be satisfactory described by the three band model with the pair of almost equivalent to the tetragonal sample hole and electron bands, supplemented with the highly mobile electron band which has two order smaller carrier number. Therefore, the peculiarity of the low temperature transport properties of the orthorhombic Fe(SeS) samples, as probably of many other orthorhombic iron superconductors, is due to the presence of a small number of highly mobile carriers which originate from the local regions of the Fermi surface, presumably, nearby the Van Hove singularity points

    Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications

    Get PDF
    In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices

    Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications

    Get PDF
    In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices
    corecore