144 research outputs found

    Comment on "Theory of metal-insulator transitions in gated semiconductors" (B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999))

    Full text link
    In a recent Letter, Altshuler and Maslov propose a model which attributes the anomalous temperature and field dependence of the resistivity of two-dimensional electron (or hole) systems to the charging and discharging of traps in the oxide (spacer), rather than to intrinsic behavior of interacting particles associated with a conductor-insulator transition in two dimensions. We argue against this model based on existing experimental evidence.Comment: 1 page; submitted to PR

    Spin polarization of strongly interacting 2D electrons: the role of disorder

    Full text link
    In high-mobility silicon MOSFET's, the gāˆ—māˆ—g^*m^* inferred indirectly from magnetoconductance and magnetoresistance measurements with the assumption that gāˆ—Ī¼BHs=2EFg^*\mu_BH_s=2E_F are in surprisingly good agreement with gāˆ—māˆ—g^*m^* obtained by direct measurement of Shubnikov-de Haas oscillations. The enhanced susceptibility Ļ‡āˆ—āˆ(gāˆ—māˆ—)\chi^* \propto (g^*m^*) exhibits critical behavior of the form Ļ‡āˆ—āˆ(nāˆ’n0)āˆ’Ī±\chi^* \propto (n - n_0)^{-\alpha}. We examine the significance of the field scale HsH_s derived from transport measurements, and show that this field signals the onset of full spin polarization only in the absence of disorder. Our results suggest that disorder becomes increasingly important as the electron density is reduced toward the transition.Comment: 4 pages, 3 figure

    On the Theory of Metal-Insulator Transitions in Gated Semiconductors

    Full text link
    It is shown that recent experiments indicating a metal-insulator transition in 2D electron systems can be interpreted in terms of a simple model, in which the resistivity is controlled by scattering at charged hole traps located in the oxide layer. The gate voltage changes the number of charged traps which results in a sharp change in the resistivity. The observed exponential temperature dependence of the resistivity in the metallic phase of the transition follows from the temperature dependence of the trap occupation number. The model naturally describes the experimentally observed scaling properties of the transition and effects of magnetic and electric fields.Comment: 4 two-column pages, 4 figures (included in the text

    Alite calcium sulfoaluminate cement: chemistry and thermodynamics

    Get PDF
    Calcium sulfoaluminate (CA)cementisabinderofincreasinginteresttothecementindustryandisundergoingrapiddevelopment.Currentformulationsdonotcontainalite;however,alitecalciumsulfoaluminate(aāˆ’CA) cement is a binder of increasing interest to the cement industry and is undergoing rapid development. Current formulations do not contain alite; however, alite calcium sulfoaluminate (a-CA) cements can combine the favourable characteristics of Portland cement (PC) with those of CAcementwhilealsohavingalowercarbondioxidefootprintthanthecurrentgenerationofPCclinkers.Thispaperpresentstworesultsontheformationofaāˆ’CA cement while also having a lower carbon dioxide footprint than the current generation of PC clinkers. This paper presents two results on the formation of a-CA clinkers. The first is a thermodynamic study demonstrating that the production of a-CAclinkerispossiblewithouttheuseofmineralisers,dopingwithforeignelements,orusingmultiplestagesofheating.Itisestablishedthataāˆ’CA clinker is possible without the use of mineralisers, doping with foreign elements, or using multiple stages of heating. It is established that a-CA clinker can be readily produced in a standard process by controlling the oxygen and sulfur dioxide fugacity in the atmosphere. This allows for the stabilisation of yeā€™elimite to the higher temperatures required for alite stability. The second result establishes that when using fluorine to mineralise a-C$A clinker production, the iron content in the clinker is also an important variable. Although the exact mechanism of alite stabilisation is not known, it is shown that alite formation increases with the combination of calcium fluoride and iron (III) oxide in the mix

    Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions

    Full text link
    Recently, a simple non-interacting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, has been introduced in order to describe the observed ``metal-insulator transition'' in two dimensions [1]. Here, based upon that model, a two-species-percolation scaling theory is introduced and compared to the experimental data. The two species in this model are, on one hand, the ``metallic'' point contacts, whose critical energy lies below the Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/he^2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the non-monotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmonotonic dependence of the resistance on temperature or the inflection point of the resistance vs. parallel magnetic are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction. It is also shown that the resistance on the ``metallic'' side can decrease with decreasing temperature by an arbitrary factor in the degenerate regime (Tā‰²EFT\lesssim E_F).Comment: 8 pages, 8 figure

    Unexpected Behavior of the Local Compressibility Near the B=0 Metal-Insulator Transition

    Full text link
    We have measured the local electronic compressibility of a two-dimensional hole gas as it crosses the B=0 Metal-Insulator Transition. In the metallic phase, the compressibility follows the mean-field Hartree-Fock (HF) theory and is found to be spatially homogeneous. In the insulating phase it deviates by more than an order of magnitude from the HF predictions and is spatially inhomogeneous. The crossover density between the two types of behavior, agrees quantitatively with the transport critical density, suggesting that the system undergoes a thermodynamic change at the transition.Comment: As presented in EP2DS-13, Aug. 1999. (4 pages, 4 figures
    • ā€¦
    corecore