94,528 research outputs found
Annealing-induced Fe oxide nanostructures on GaAs
We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy. These nanostripes; exhibited uniaxial magnetic anisotropy. The formation of these nanostructures is attributed to surface anisotropy, which in addition could explain the observed uniaxial magnetic anisotropy
Collaborative signal and information processing for target detection with heterogeneous sensor networks
In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
Array signal processing for maximum likelihood direction-of-arrival estimation
Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds
Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes
To help reveal the complete picture of linear kinetic drift modes, four
independent numerical approaches, based on integral equation, Euler initial
value simulation, Euler matrix eigenvalue solution and Lagrangian particle
simulation, respectively, are used to solve the linear gyrokinetic
electrostatic drift modes equation in Z-pinch with slab simplification and in
tokamak with ballooning space coordinate. We identify that these approaches can
yield the same solution with the difference smaller than 1\%, and the
discrepancies mainly come from the numerical convergence, which is the first
detailed benchmark of four independent numerical approaches for gyrokinetic
linear drift modes. Using these approaches, we find that the entropy mode and
interchange mode are on the same branch in Z-pinch, and the entropy mode can
have both electron and ion branches. And, at strong gradient, more than one
eigenstate of the ion temperature gradient mode (ITG) can be unstable and the
most unstable one can be on non-ground eigenstates. The propagation of ITGs
from ion to electron diamagnetic direction at strong gradient is also observed,
which implies that the propagation direction is not a decisive criterion for
the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
Hadronic Transition chi(c1)(1P) to eta(c) plus two pions at the Beijing Spectrometer BES and the Cornell CLEO-c
Hadronic transitions of the chi(cj)(1P) states have not been studied yet. We
calculate the rate of the hadronic transition chi(c1)(1P) to eta(c) plus two
pions in the framework of QCD multipole expansion. We show that this process
can be studied experimentally at the upgraded Beijing Spectrometer BES III and
the Cornell CLEO-c.Comment: 6 pages RevTex4(two-column). Version published in Phys. Rev. D 75,
054019 (2007
Simultaneous Inference of User Representations and Trust
Inferring trust relations between social media users is critical for a number
of applications wherein users seek credible information. The fact that
available trust relations are scarce and skewed makes trust prediction a
challenging task. To the best of our knowledge, this is the first work on
exploring representation learning for trust prediction. We propose an approach
that uses only a small amount of binary user-user trust relations to
simultaneously learn user embeddings and a model to predict trust between user
pairs. We empirically demonstrate that for trust prediction, our approach
outperforms classifier-based approaches which use state-of-the-art
representation learning methods like DeepWalk and LINE as features. We also
conduct experiments which use embeddings pre-trained with DeepWalk and LINE
each as an input to our model, resulting in further performance improvement.
Experiments with a dataset of 356K user pairs show that the proposed
method can obtain an high F-score of 92.65%.Comment: To appear in the proceedings of ASONAM'17. Please cite that versio
Determination of activation volumes of reversal in perpendicular media
We discuss a method for the determination of activation volumes of reversal in perpendicular media. This method does not require correction for the self-demagnetizing field normally associated with these media. This is achieved by performing time dependence measurements at a constant level of magnetization. From the difference in time taken for the magnetization to decay to a fixed value at two fields-separated by a small increment DeltaH, the activation volume can be determined. We report data for both CoCrPt alloy films and a multilayer film, typical of those materials under consideration for use as perpendicular media. We find activation volumes that are consistent with the hysteresis curves of the materials. The activation volume scales qualitatively with the exchange coupling. The alloy films have significantly lower activation volumes, implying that they would be capable of supporting a higher data density
- …
