28,747 research outputs found
Generation of a composite grid for turbine flows and consideration of a numerical scheme
A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions
A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method
This study proposes a new method for modelling and analysing human-related accidents. It integrates HFACS (Human Factors Analysis and Classification System), which addresses most of the socio-technical system levels and offers a comprehensive failure taxonomy for analysing human errors, and AT (Activity Theory)-based approach, which provides an effective way for considering various contextual factors systematically in accident investigation. By combining them, the proposed method makes it more efficient to use the concepts and principles of AT. Additionally, it can help analysts use HFACS taxonomy more coherently to identify meaningful causal factors with a sound theoretical basis of human activities. Therefore, the proposed method can be effectively used to mitigate the limitations of traditional approaches to accident analysis, such as over-relying on a causality model and sticking to a root-cause, by making analysts look at an accident from a range of perspectives. To demonstrate the usefulness of the proposed method, we conducted a case study in nuclear power plants. Through the case study, we could confirm that it would be a useful method for modelling and analysing human-related accidents, enabling analysts to identify a plausible set of causal factors efficiently in a methodical consideration of contextual backgrounds surrounding human activities
Gravitationally Coupled Electroweak Monopole
We present a family of gravitationally coupled electroweak monopole solutions
in Einstein-Weinberg-Salam theory. Our result confirms the existence of
globally regular gravitating electroweak monopole which changes to the
magnetically charged black hole as the Higgs vacuum value approaches to the
Planck scale. Moreover, our solutions could provide a more accurate description
of the monopole stars and magnetically charged black holes
Finite Energy Electroweak Dyon
The recent MoEDAL experiment at LHC to detect the electroweak monopole makes
the theoretical prediction of the monopole mass an urgent issue. We discuss
different ways to estimate the mass of the electroweak monopole. We first
present a scaling argument which indicates that the mass of the electroweak
monopole to be around 4 TeV. To justify this we construct finite energy
analytic dyon solutions which could be viewed as the regularized Cho-Maison
dyon, modifying the coupling strengths of the electromagnetic interaction of
-boson in the standard model. Our result demonstrates that a genuine
electroweak monopole whose mass scale is much smaller than the grand
unification scale can exist, which can actually be detected at the present LHC.Comment: arXiv admin note: substantial text overlap with arXiv:hep-th/0210299,
arXiv:hep-th/970703
- …