1,174 research outputs found
Numerical Study of Photo-Induced Dynamics in Double-Exchange Model
Photo-induced spin and charge dynamics in double-exchange model are
numerically studied. The Lanczos method and the density-matrix
renormalization-group method are applied to one-dimensional finite-size
clusters. By photon irradiation in a charge ordered (CO) insulator associated
with antiferromagnetic (AFM) correlation, both the CO and AFM correlations
collapse rapidly, and appearances of new peaks inside of an insulating gap are
observed in the optical spectra and the one-particle excitation spectra. Time
evolutions of the spin correlation and the in-gap state are correlated with
each other, and are governed by the transfer integral of conduction electrons.
Results are interpreted by the charge kink/anti-kink picture and their
effective motions which depend on the localized spin correlation. Pump-photon
density dependence of spin and charge dynamics are also studied. Roles of spin
degree of freedom are remarkable in a case of weak photon density. Implications
of the numerical results for the pump-probe experiments in perovskite
manganites are discussed.Comment: 16 pages, 16 figure
Real-space observation of current-driven domain wall motion in submicron magnetic wires
Spintronic devices, whose operation is based on the motion of a magnetic
domain wall (DW), have been proposed recently. If a DW could be driven directly
by flowing an electric current instead of a magnetic field, the performance and
functions of such device would be drastically improved. Here we report
real-space observation of the current-driven DW motion by using a well-defined
single DW in a micro-fabricated magnetic wire with submicron width. Magnetic
force microscopy (MFM) visualizes that a single DW introduced in the wire is
displaced back and forth by positive and negative pulsed-current, respectively.
We can control the DW position in the wire by tuning the intensity, the
duration and the polarity of the pulsed-current. It is, thus, demonstrated that
spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR
Electronic structure and electric-field gradients analysis in
Electric field gradients (EFG's) were calculated for the compound at
both and sites. The calculations were performed within
the density functional theory (DFT) using the augmented plane waves plus local
orbital (APW+lo) method employing the so-called LDA+U scheme. The
compound were treated as nonmagnetic, ferromagnetic, and antiferromagnetic
cases. Our result shows that the calculated EFG's are dominated at the
site by the Ce-4f states. An approximately linear relation is
intuited between the main component of the EFG's and total density of states
(DOS) at Fermi level. The EFG's from our LDA+U calculations are in better
agreement with experiment than previous EFG results, where appropriate
correlations had not been taken into account among 4f-electrons. Our result
indicates that correlations among 4f-electrons play an important role in this
compound and must be taken into account
Fermionic response from fractionalization in an insulating two-dimensional magnet
Conventionally ordered magnets possess bosonic elementary excitations, called
magnons. By contrast, no magnetic insulators in more than one dimension are
known whose excitations are not bosons but fermions. Theoretically, some
quantum spin liquids (QSLs) -- new topological phases which can occur when
quantum fluctuations preclude an ordered state -- are known to exhibit Majorana
fermions as quasiparticles arising from fractionalization of spins. Alas,
despite much searching, their experimental observation remains elusive. Here,
we show that fermionic excitations are remarkably directly evident in
experimental Raman scattering data across a broad energy and temperature range
in the two-dimensional material -RuCl. This shows the importance of
magnetic materials as hosts of Majorana fermions. In turn, this first
systematic evaluation of the dynamics of a QSL at finite temperature emphasizes
the role of excited states for detecting such exotic properties associated with
otherwise hard-to-identify topological QSLs.Comment: 5 pages, 3 figure
- …