1,411 research outputs found

    Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2_2CoGe2_2O7_7

    Full text link
    We have investigated the variation of induced ferroelectric polarization under magnetic field with various directions and magnitudes in a staggered antiferromagnet Ba2_2CoGe2_2O7_7. While the ferroelectric polarization cannot be explained by the well-accepted spin current model nor exchange striction mechanism, we have shown that it is induced by the spin-dependent pp-dd hybridization between the transition-metal (Co) and ligand (O) via the spin-orbit interaction. On the basis of the correspondence between the direction of electric polarization and the magnetic state, we have also demonstrated the electrical control of the magnetization direction.Comment: 4 pages, 4 figure

    Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction

    Full text link
    We have investigated electrically-active magnetic excitations (electromagnons) in perovskite manganites with the EE-type (up-up-down-down) spin structure by terahertz spectroscopy. Eu1x_{1-x}Yx_xMnO3_3 (0.1x\le x\le1) and Y1y_{1-y}Luy_yMnO3_3 (0y\le y\le1) without magnetic ff-moments, which host collinear sinusoidal, AA-type, cycloidal, and EE-type spin orders, are used to examine the systematics of possible electromagnons. Three-peak structures (23, 35, 45 cm1^{-1}) of magnetic origin show up in the EE-type phase with little composition (yy) dependence of frequencies, making a contrast with the electromagnons observed in the cycloidal-spin (x0.8x\le0.8) phases. One of these electromagnon is ascribed to the zone-edge magnon mode based on the calculated magnon dispersions.Comment: 5 pages, 4 figure

    Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction

    Get PDF
    We have investigated electrically-active magnetic excitations (electromagnons) in perovskite manganites with the EE-type (up-up-down-down) spin structure by terahertz spectroscopy. Eu1x_{1-x}Yx_xMnO3_3 (0.1x\le x\le1) and Y1y_{1-y}Luy_yMnO3_3 (0y\le y\le1) without magnetic ff-moments, which host collinear sinusoidal, AA-type, cycloidal, and EE-type spin orders, are used to examine the systematics of possible electromagnons. Three-peak structures (23, 35, 45 cm1^{-1}) of magnetic origin show up in the EE-type phase with little composition (yy) dependence of frequencies, making a contrast with the electromagnons observed in the cycloidal-spin (x0.8x\le0.8) phases. One of these electromagnon is ascribed to the zone-edge magnon mode based on the calculated magnon dispersions.Comment: 5 pages, 4 figure

    Magnon Dispersion and Anisotropies in SrCu2_2(BO3_3)2_2

    Full text link
    We study the dispersion of the magnons (triplet states) in SrCu2_2(BO3_3)2_2 including all symmetry-allowed Dzyaloshinskii-Moriya interactions. We can reduce the complexity of the general Hamiltonian to a new simpler form by appropriate rotations of the spin operators. The resulting Hamiltonian is studied by both perturbation theory and exact numerical diagonalization on a 32-site cluster. We argue that the dispersion is dominated by Dzyaloshinskii-Moriya interactions. We point out which combinations of these anisotropies affect the dispersion to linear-order, and extract their magnitudes.Comment: 11 pages, 7 figures, 1 table, v2 conclusion shortened, figs clarifie

    Field-Induced Effects of Anisotropic Magnetic Interactions in SrCu2(BO3)2

    Full text link
    We observed a field-induced staggered magnetization in the 2D frustrated dimer-singlet spin system SrCu2(BO3)2 by 11B NMR, from which the magnitudes of the intradimer Dzyaloshinsky-Moriya interaction and the staggered g-tensor were determined. These anisotropic interactions cause singlet-triplet mixing and eliminate a quantum phase transition at the expected critical field Hc for gap closing. They also provide a quantitative account for some puzzling phenomena such as the onset of a uniform magnetization below the and the persistence of the excitation gap above Hc. The gap was accurately determined from the activation energy of the nuclear relaxation rate.Comment: 8 pages, 5 figures, published versio
    corecore