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Coherent transverse instabilities observed in the KEK booster have been studied experimentally and theoretically. The
instabilities are induced by interaction of the beam with a ferrite-loaded kicker magnet. Here we consider the case when the
matching resistance of the magnet is removed. There are some resonance frequencies in the magnet that contribute to the
instability. The relation between the ac current passing through the magnet gap and the induced current in the coil is
represented by a mutual inductance. A calculation is made of the field induced in the magnet by a bunched beam, the
betatron oscillation ofwhich is modulated by the synchrotron oscillation. The beam is regarded as a free string. The motion
of the beam caused by the induced field is calculated and a formula for the buildup time of the oscillation amplitude is
obtained in the form of an eigenvalue ofa matrix equation. Numerical results agree quite well with the experiments in regard
to the buildup time, the oscillation mode and the time of appearance of the instability during acceleration.

1. INTRODUCTION

Coherent transverse instability has been observed in
many particle accelerators, accompanying in­
creases of beam current. Theoretical and experi­
mental studies have revealed the nature of the
instability and given basic ideas for compensating
systems. Laslett, Neil and Sessler l developed a
theory of the instability for a coasting beam taking
into account the resistive wall of vacuum chamber.
Courant and Sessler2 extended the theory to
bunched beams. They treated each bunch as rigid
and considered bunch-to-bunch interaction. This
work showed that tune and tune spread were im­
portant factors for the instability. On the other hand,
Pellegrini3 and Sands4 considered the interaction
within the bunch, taking into account the coupling of
the synchrotron and betatron oscillation. They
showed that the instability depended on the bunch
mode and the sign of the chromaticity. Sacherer5

summarized these considerations and represented
the mode explicitly. All these theories are very
elaborate, but the agreement with the observations
or experiments is not satisfactory. This is partly
because it is difficult to calculate precisely the
interaction of the beam with complex surrounding
structures and partly because the source of the
interaction is ~not always clear.

In the KEK booster we have observed a coherent
transverse instability in the horizontal direction. It
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has been provedO that the instability is induced by
interaction between the beam and the kicker magnet
which is used for fast beam extraction. The magnet
is composed of laminations of ferrite cores and
electric plates, so it responds to high-frequency
beam oscillations. The one-tum coil ofthe magnet is
terminated with a matched load resistance. When
the termination is removed, the instability grows
more rapidly. Here we confine ourselves to analysis
of the instability for the case where the termination
is removed. The kicker magnet without the termin­
ation resonates at some frequencies, which con­
tributes to the instability. Therefore the treatment in
this paper concerns essentially a transverse in­
stability of a resonant type. As shown later, this
includes the bunch-to-bunch interaction as well as
the intra-bunch interaction.

As for the treatment of the bunched beam itself,
we take into account the chromaticity in the same
way as the theory ofPellegrini and Sands. However,
unlike their treatment where they follow the forced
motion ofa given particle, we consider the motion of
collective particles which arrive at the kicker magnet
at the same time, and regard them as a short section
ofa free string. Every particle rotates in the rfbucket
because of the synchrotron motion and the revo­
lution period is modulated sinusoidally. Pellegrini
and Sands formulated the motion of such a particle
forced by the preceding particle within the bunch
through some intervening surroundings. This treat-
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TABLE 1

Parameters of kicker magnets

very rapidly (in order of50 nsec), the structure ofthe
magnet is different from usual magnets. It has 12
sections, each of which is composed of a ferrite core
and capacitive electrode. Its equivalent circuit is
expressed by the lumped LCR circuit shown in Fig.
1. With respect to the n-th mesh, the following
relation holds for the voltage Vn and current In'

Since Vn == (In- l - In)/C, we obtain

n 2(In_ l + I n+ l - 2In) - 8j n- in == 0,
(2-2)

where n == l/yLC and 8 == RIL. With the
boundary conditions 10 == IN == 0, the solution of
these equations can be easily obtained;

(2-1)

(2-3)I 2 ·A· (mnrr) jD.mt - (8/2)t
== J SIn -- e

n N '

total length IB 300 mm

number of sections N 12

gap height h 40mm

aperture w 100 mm

inductance (per section) L 7.85 X 10-8 H
capacitance (per section) C 155 X 10- 12 F

characteristic impedance Zo 22.5 n

with

n = nO ~ _ (_8 ) 2 (2-4)
m mY] 2 0

!1 m

n~ = 2nsiQ. ( 2:
rr

) (m = 1 to N),

where m is the resonance mode. There are N (== 12)
resonance frequencies, which are !1 1/2rr ~ 12,
!12/2rr ~ 24, !1 3/2rr ~ 35 ... MHz, obtained by
substituting numerical values in Table 1.

We have measured the resonance frequency by
the method shown in Fig. 2. The results are shown in
Fig. 3. At resonance frequencies the voltages Voand
VN at the both ends in the equivalent circuit become
large. The frequency dependences of Vo and VN are
the same. The measured resonance frequencies are

2. CHARACTERISTICS OF THE KICKER
MAGNET

ment is, however, not so convenient because of the
oscillating period when we include the bunch-to­
bunch interaction. This is especially so for a case
when the reactor or the kicker magnet has some
resonating periods. As described later, the particles
that arrive at a given point at the same time have the
same phase of betatron-oscillation amplitude with
respect to the modulating phase of the synchrotron
oscillation. We can therefore regard them as a
section of a string whose revolution period is the
same as the synchronous particles. We set aside the
longitudinal movement of each particle within the
bunch. This treatment is as ifwe were to consider the
motion of a train (flexible) regardless of the move­
ment of the passenger from car to car in the train,
with the condition that the number ofpassengers in a
given car remains constant.

In the booster ring, proton beam is accelerated
from 20 MeV to 500 MeV in 25 msec with' a
harmonic number of 1; the revolution frequency
changes from 1.6 MHz to 6.0 MHz. The number of
the particles in the bunch is approximately 4 to 6 X
1011. The accelerated beam is extracted by fast
excitation of the kicker magnet. In normal operation
ofthe kicker magnet, the instability is observed at 13
to 20 msec after the injection and the buildup time is
3 to 5 msec. When the termination of the magnet is
removed, the instability is induced at approximately
17 msec and the buildup time is 1 to 2 msec.

In the following, we give first the characteristics of
the kicker magnet in section 2. The interaction
between ac current and the magnet is represented by
a mutual inductance and the induced field due to the
current is derived. In section 3, the reaction of the
bunched beam to the field induced by the beam itself
is calculated. The buildup time of the instability is
shown to be given by an eigenvalue of a matrix
equation. In section 4, numerical calculations are
made and the results are compared with the ob­
servations and experiments. The agreement is very
good. Finally some discussion is given in se'ction 5.

For the purpose of fast extraction of the accelerated
proton beam, three identical kicker magnets are
installed in a straight section of the booster ring. The
parameters of the magnet are given in Table 1.7

Since the magnetic field is required to build up

2-1 Equivalent circuit of the kicker magnet
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FIGURE 3 Frequency dependence of Va or VN' The resistance R a ( = 220) is the matched load.

10.2,18.4,24.5, ... MHz, which do not agree well
with those calculated. This may be due to the
simplicity of the equivalent circuit. The disagree­
ment does not much matter for consideration of
the instability. By applying the relation Q = n m/ aw

= nmL/R, the resistance R is estimated to be 0.4 n,
1.2 nand 3 n for the peaks at 10.2 MHz, 18.4 MHz
and 24.5 MHz, respectively. Here Q is the quality
factor and L\w is the frequency width of the res­
onance. The damping time of the large peak at 10.2



128 Y. MIYAHARA AND K. TAKATA

2-3 Induced currents at high frequencies

so that Eq. (2-8) becomes

a21 (z,t)
n 2d2

- 8i(z ,t) - i(z ,t) = ioyw 2eiw1
•az 2

(2-10)

(2-9)

(R 2 » R),

(2-7)

wNM
I i 2/i 1 I = -

where

wNL
() = arc tan [( ) ]

- 2R 2 + NR

(2R 2 + NR)cos() - wNL sin()

On substituting numerical values, Ii21i1 I is repre­
sented by straight lines in Figs. 4 and 5. Agreement
ofthe calculation with measured values is very good.

We now consider forced oscillations in the res­
onance-frequency range in the equivalent circuit of
Fig. 7-b. The same mutual inductance given in Eq.
(2-5) is valid for these frequencies. As before, there
is a relatiol). for the n-th mesh:

n 2(In _ 1 + I n+ l - 2In ) - ojn - in = -yi l , (2-8)

w~ere n = I/VLC, 8 = R/L, y= MIL and i l =
ioelw1

• Since several low resonance frequencies will
be seen to be related to the instability, we solve Eq.
(2-8) with a smooth approximation. Let In be
replaced by I(z), where z = nd and d is the length of
a unit section, and take the differences. Then

a2I(z)

az 2

2R 2i 2 + N(Ri 2 + Ll 2 + Mil) = O. (2-6)

For a primary current i l = Ipejwi
, the secondary

current is given by

i
2

= I
s
eJ"lwl+(rr/2)+()!,

shown in the figure. The calculated mutual in­
ductance per unit section for various L1s is well
represented by

M = {IO.I - 0.160 L1x(mm)}

X 10-8 [Tesla m21A] (2-5)

The equivalent circuit of the primary and sec­
ondary currents at low frequencies is represented
in Fig. 7-a. The following relation holds between the
two currents:

2-2 Field induced in the kicker magnet by a
sinusoidal current

MHz is approximately Td ~ IIL1w ~ 0.2 J.ls. This is
nearly the same as the revolution period around 17
msec after injection, when the instability is ob­
served.

As described in section 1, the circulating beam
induces electric and magnetic fields in the gap of the
kicker magnet, to which the beam reacts and be­
comes unstable in some conditions. In order. to
investigate the field induced in the gap, we have
measured the induced current i 2 in the one-turn coil
of the magnet when a sinusoidal current i I flows
through a wire stretched through the gap of the
magnet. The ends of the coil are connected by a
resistance R 2 with which the induced current was
monitored. First the ratio I i2/i l l was measured as a
function of the position Lix of the primary current in
the gap at 800 kHz. This is low enough compared
with the resonance frequencies so that t-he indoced
current runs almost totally through R 2 and L. The
result is shown with solid circles in Fig. 4. The
induced current decreases linearly with increasing
Lix. Next the frequency dependence of I i2/i l l was
measured- at~= 0- or at the center of the gap. The
result is shown with solid circles in Fig. 5. The
induced current increases linearly with increasing
frequency. The phase difference between the two
currents is 900 in the frequency range 0.1 to 3 MHz.
These characteristics clearly indicate that the sec­
ondary current is induced by the alternating mag­
netic flux passing through the ferrite cores. If
electrostatic induction were dominant, the induced
current would be zero at Lix ~ 0 and almost
independent of frequency. The relation of the two
currents can then be expressed with a mutual
inductance. At higher frequencies, comparable to
the resonance frequencies, the induced current
passes through the capacitance C.

Next we calculate the mutual inductance M per
unit section. By definition M = ¢Iii, where ¢ is the
flux induced by ii in the area enclosed by the coil. A
computer program calculation was made of the
magnetic field induced by dc current passing at
various positions Lix. Figure 6 is an example of the
field distribution at the median plane. The flux
enclosed in the coil is indicated by the dotted area,
taking into account the skin effect. For ac current of
sufficiently high frequency, the flux is inhibited from
penetrating inside the coil itelf. It therefore seems
appropriate to set the boundary ofthe dotted area as
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FIGURE 4 Ratio of the secondary current to the primary current I i2/i 11 versus the position of the primary current Ax.
The solid marks are experimental and the straight line is theoretical.

(2-12)

Keeping in mind the boundary condition10 = 1N = 0,
we expand 1(z ,t) in a Fourier series

(2-11 )

where /B = (= N d) is the total length of the kicker
magnet. Although the right-hand side ofEq. (2-10)
is independent of z, we expand it similarly for a
technical purpose;

• <Xl ( mrrz )
ioyw

2eJWl = m~I fm(t)sin -/-B- .
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By the reverse transformation we get

fm(t) = I 4i~W2 flwt, for m = 1, 3, 5 ...

0, otherwise. (2-13)

Substituting Eqs. (2-11) and (2-12) into Eq. (2-10),
we get

Ym(t) + oYm(t) + n 2
m Ym (t) = - fm(t), (2-14)

where Om = nm/N, which is slightly different
from Eq. (2-4), but agrees in the low-frequency
limit. The solution of the equation (2-14) is easily
obtained;

i) for m = 2, 4, 6, ... (fm(t) = 0)

Ym(t) = e-otl2 (Aeomt + Be-omt ), (2-15)

where om = «0/2)2 - n~y~.
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am = arc tan ( 2W
8

2)' (2-1 8 )
W -Om

Ym(t) always damps regardless of the sign of
[(8/2)2 - (l~].

ii) for m = 1,3,5, ... (fm(t) ~ 0)

(2-16)

4ioY w 2

A =--
m mrr \/ (w 2 - (l2

m
)2 + (W8)2

and

(2-17)
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FIGURE 7 Equivalent circuit of kicker magnet with the primary current at low frequency (a) and at high frequency (b).

(3-1)

Figure 8 represents the frequency· dependence of
the amplitude Am and the phase lag am for typical
values of R. For the resonance frequencies Om we
use the measured values shown in Fig. 3. Near the
resonance frequencies, the amplitude becomes large
and the phase lag rapidly crosses am = -900

•

Comparing the peak widths in Figs. 3 and 8, we see
that the resistances R previously estimated for each
resonance frequency from Fig. 3 have reasonable
values. It is noteworthy that the phase lag is an
important factor in the buildup of the instability.

mentum of the particle;

L\v L\p
-=(- ,

v p

where ( is the chromaticity. Because of the synch­
rotron motion ofa particle in the rfbucket, L\vIv also
makes synchrotron oscillations. Therefore a phase
shift in the betatron oscillation is brought about by
the synchrotron oscillation: The betatron-oscilla­
tion amplitude of the l-th particle is given by4

where Z; is the oscillation amplitude, w fJ I2rr is the
betatron-oscillation frequency without synchrotron
modulation, r; is the time ofarrival at a given point in
advance of the synchronous particle and 11' = 1 ­
((111). Because ofthe velocity ofthe particle f3 ~ 1,11
= a - (1/y 2), where a is the momentum-com-

3. INTERACTION BETWEEN BUNCHED
BEAM AND KICKER MAGNET

3-1 String model of bunched beam

The betatron-oscillation frequency per revolution v
deviates in proportion to the deviation of the mo-

A - Z' jwfJ(t+rl'r:')
uX/ - / e / , (3-2)
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paction factor, ~nd y = 1/(1 - f32Yh. By replacing r'1
by -T1 and Z;-jWf3 r:1 by ZI in Eq. (3-2), we find

where w(

(3-3)

((/1] )wf3. The quantity T1 changes

sinusoidally with time and the l-th particle moves
forward and backward in the bunch.

There are other particles than the l-th particle
whose synchrotron-oscillation amplitudes are dif­
ferent. Note that these particles have the same phase
W(T1 with respect to modulation by the synchrotron
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bio j).r, 00 ••• •

-- -- L p,{Z, + 2J(kwo + wp)Z,
2 T k=-oo

(kwo +Wp)2Z,}
X ej(-kwo+W()r, ej(kwO+WP)f (3-9)

As derived previously, the solution of Eq. (3-8) is
given by

oscillations since fu, in Eq. (3-3) is independent of
~p/p. Therefore, by neglecting the longitudinal
motion of each particle, we can regard the particles
that arrive at the same time as a short section of a
charged free string. We do not follow the motion ofa
given particle, but consider instead the motion of the
short section of the string. The revolution period is
the same for all sections. In spite of the synchrotron
motions of individual particles, the longitudinal
distribution is constant with respect to the time.
Thus we give the distribution to the string.

3-2 Field induced by bunched beam

I(z,t) == L L {Y~k(t) + Y~k(t)}
m= 1,3.5, ... k=- 00

- (mrr )X sin -- z
Is

(3-10)

First we consider the field induced in the kicker
magnet by the I-th section, which makes the betatron
oscillation described by Eq. (3-3). The section
passes through the magnet at the time t == nT + r"
where n is an integer and T is the revolution period.
The current of this section at the magnet is

i, == iop,D(t - nT -r,), (3-4)

where p, is the normalized charge density and

D(t - nT -r,) =\1 for nT + r, < t < nT
+ r, + ~r,

o otherwise, (3-5)

where ~r, is the time length of the I-th section. The
function D can be expanded in a Fourier series; that
is,

where

. a.b)

Y a,b( ) == Aa,b J(Wk
f + CYmkmk t mk e

4
Aa,b == --mk

mrr

a~'t == arc tan

(3-6)

Here again we see that only odd m's are effective.

Wk == kwo for supefscript a

kwo + wp for superscript b.

~ b 2
~ (Y~k + Y mk ) -
k mrr

(3-12)

L
m=I,3,5, ...

and

The induced current I( z,t) is distributed like
sin (mz/IB) in the coil of the magnet. The magnetic
field produced by this current changes direction
locally within the magnet depending on the sign of
the current. Since the magnet length is very short
compared with the wavelength of the betatron
oscillation, only the average field contributes to the
kick angle of the particle. The average current is
given by

</(z ,t» =

1 ~ jkwO(t-r')8r,
D(t - nT - r,) ==- ~ e

T k=-oo

where Wo == 2rr/T. Taking into account the previous
description in section 2-3, the magnetic flux induced
by the I-th section within the coil of the magnet is

¢, == (a - b~x,)i" (3-7)

where a and b are the coefficients given in Eq. (2-5).
Note that the time dependence of ¢,(t) arises from
i,(t) and fu,(t). As described in section 2-3, the
induced current in the magnet obeys the relation

From Eqs. (3-4), (3-6), and (3-7) we find
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3-3 Equation of motion

In the previous section we have derived the induced
current due to the l-th section. Here we consider the
motion of the s-th section in reaction to the current.
The sum of the magnetic fields produced by all
sections exerts force on the s-th section at a time
t = nT + Ts (n: integer). Keeping in mind that the
betatron frequency is almost unaffected, as will be
shown later, the equation of motion of the s-th
section is given by

(3-13)

(3-17)

Zs ex: exp[expj(k+ n)wot],

which simply oscillates. If k+n = 0, we get

t = 'LLLH Z ~ }(kwO-w()(rs-r,) (3-18)
s J, m k mk ,p, T ,e ,

where

evJ.lo
f(t)= -- L<I(z,t»,

h ,
(3-19)

where e is the unit charge, v the particle speed, h the
magnet gap and mo the proton mass. Using ex­
pressions for the s-th section similar to Eqs. (3-3)
and (3-5), we get from Eqs. (3-12) and (3-13)

This is the basic equation for the instability.

3-4 Solution of the basic equation

(3-20)

(3-22)

Since Zs is a function of Ts with period T, we can
expand it in Fourier series,

With this expansion, it is easier to make the
calculation in Eq. (3-18). However the result does
not explain explicitly the mode of the experimental
observation (as described later). It is necessary to
expand Zs in the real series

Zs = t {ansin(nwoTs) + bncos(nwoTs )},

n =0 (3 -21 )

where n is the mode number. Substituting this in Eq.
(3-18), we have

l:{ilnsin(nwoTs ) + bncoS(nwoTs)}
n

= j 1: L L L H mk P, ~T,{apsin(pwoT,)
, m k p

+ b (p )\x }(k-q)wo(rs-r,)pCos WOT, 1 e

where we have defined q = W(/W00 We can solve for

(3-15)

~ }nwoU-rsJ
~e .
n

Note that ~Ts in Eq. (3-14) is not the section length
as before, but the time required for the section to
pass through the magnet. Therefore V~Ts= lB' Since
we consider a slow change ofZn we neglect Zs and
Z, in Eqs. (3-14) and (3-11). '

If the contribution of the Y~k term is dominant,
then

2jwf3Z s = (_) evf..Lo ~rs bio }:}:}:}:
m 0Yh T 2L ' m k - n

8 w1
(mrr)2 y rw:k

2 . Z }(w{3l+w{3rs ) ex: L L e}(k+n)wOI
J w{3 se n k

Since v is not an integer,

w{3 = VWo ¥- (k + n)wo; (3-16)

thus Zs(t) only oscillates. On the other hand, we get
from Y~k term
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where

G~k == g ( (}-t - k + q) rr) - g ( (}-t + k - q) rr )

and

g(y) == sinyly. (3-24)

Similarly we can find

bM(t) == j !: L L L HmkP,~7:,G:k{apsin(pwo7:,)
, m k p

+ bpcos(Pwo7:,)}e -j(k-q)WOr:" (3-25)

where

Substituting these into Eq. (3-23) and using Eq. (3­
28), we find

dw · AM == jL L L H mk G~k
m k p

(BpF;k - jApF~k). (3-31)

Similarly from Eqs. (3-25) and (3-28)

dw·B M == L L LHmkG:k (BpF;k - jA7~k).
m k p (3-32)

Combining Eqs. (3-31) and (3-32), we get a matrix
equation

G:k == g ( (}-t - k + q) rr) + g ( (f.l + k - q) rr ).
(3-26 )

Next we calculate the summation over I in Eqs.
(3-23) and (3-25). The normalized charge dis­
tribution p, along the orbit can be also expanded in
Fourier series. But since we treat only the transverse
instability, the density modulation is not important.
Thus we approximate it as follows;

for I7:, I ~ 7:/2

(3-27)
for 7:/2 ~ I 7:, I ~ T/2

Then the summation over I is

(3-33)

Thus ~w is the eigenvalue ofEq. (3-33) and theAp
and Bp are elements of the eigenvector.

where

and r == 7:IT.
Equations (3-23) and (3-25) show that many

modes couple together. We assume a unique time
dependence for every mode;

a ,u(t) == A Me!'tlwl

b
M

(t) == B Me!'tlwl (}-t == 0 to 00) (3-30)

(4-2)-15~k~10.

4. NUMERICAL CALCULATION AND
COMPARISON WITH EXPERIMENTS

It is not necessary to consid~r higher resonance
frequencies.

The functions f (x) andg(y ) shown in Fig. 10 are
both even functions. The function f (x) decreases
very rapidly with its argument; its effective range is

4-1 Method of the numerical calculation

The matrix equation (3-33) is of infinite dimension
(}-t, P == 0 to 00). It reduces to a small number of
dimensions for realistic parameters of the booster
and kicker magnet. As shown in Fig. 8, the functions
Am' and H mk become large at the resonance fre­
quencies of the kicker magnet,

wk==(k+v)wo==Om, (4-1)

where only odd m should be considered. The
circulating beam meets many resonances during the
acceleration (wo/2rr == 1.6 to 6.0 MHz), as indicated
in Fig. 9. The resonance range of k for 0 I and 0 3 is

(3-29)

+ rr7:
F pk == -4- {f«(P - k + q)rrr)

± f«P + k - q)rrr)}
cos x

f (x) ==
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(4-4)

Therefore the numerical calculation of Eq. (3-33)
was made for dimensions 2D = 40 to 60.

The numerical value of the proportional constant
H mk is given here.

wherexp is the dispersion ofthe magnet. Then we get
q(= w(/wa = (,v/1]). Figure 11 shows rand q as well
as (, and v. The range of q is -1.5 to 3 and r ~ 0.5.
Then from Eqs. (4-2) and (4-3), the effective range
ofp is

IX I ~ 3rr, (4-3)

where x = (p ± (k - q))rrr.
The longitudinal charge distribution was ob­

served with a fast intensity monitor and the ratio
r(= rlT) was obtained. The chromaticity of the
booster was measured with the beam. The hori­
zontal position of the beam was shifted with the rf
feedback system and the v value was measured. The
chromaticity is obtained from the relation

x p ~v
(,=

v ~

o~p ~ 24. (4-5)
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A w2
H ~-- k jamk

mk - vyTr: m2 v(wi - n~2 + (WkO)2 e ,

1 e2Ilo IBbN
A = - - -- ==5.98X 10-5

• (4-6)
211'2 mo hL

Here we have set N = 4.00 X lOll and used the
relation

io·
11' T

1
T

2 T

<I(t» == eNwo/2rr

~
T/2

i o cos
-T/2

(4-7)

4-2 Results ofnumerical calculations and
comparison with experiment

i) buildup time of the instability Now we have
made computer calculations of the matrix equation
(3-33). We set ~w == a - j{3. From Eq. (3-30), a
gives the shift of the betatron-oscillation frequency
and {3 the inverse of the buildup time of the
oscillation amplitude. The oscillation is stable for
{3 ~ 0 and unstable for {3 > O. For a matrix
dimension 2D, there are 2D eigenvalues,D ofwhich
are zero because GOk andFok are zero. The results of
the calculation is that almost every (3 is positive and
the others are nearly zero. Figure 12 (K2) shows the
maximum {3max at each acceleration stage. The
highest peak of {3max appears around 17 msec. The
buildup time corresponding to this peak is T, == 2.2
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msec. This agrees with the appearance of the
instability around 17 msec in the booster, as shown
in Fig. 13-a. The observed buildup time is about 1to
2 msec. The other peaks in Fig. 12 are lower and
narrower, which explains why the instability is
induced only near 17 msec. The peak at 17 msec
corresponds to a resonance frequency 0 1 = Wk

= (-4 + v)wo (see the arrow in Fig. 9). This peak is

higher than the other peaks because H mk is pro­
portional to I/Tr or w~, as seen in Eq. (4-6). The
other factors in Eq. (4-6), as well as G~ and¥;k, are
not much different. The Wo is largest for the res­
onance point k = -4, as shown in Fig. 9. The higher
resonance frequency 0 3 does not much contribute
because of the increasing m and 8 or R.

When the terminations of more than one kicker
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Fourier expansion ofZS' as given in Eqs. (3-21) and
(3-30). Figure 14 shows the calculated multiple
trace for various single modes. Coupled modes can
be obtained by the linear combination ofthese single
modes. Many modes which have been observed are
the coupled modes, but some of them are single
modes. Up to now we have observed several sym-

metric modes /-l = (0, 1), (2), (3 or 4) and the
antisymmetric modes /-l = (1, 2 or 3) as shown in
Fig. 15. The observation of these modes is con­
sistent with the eigenvector ofEq. (3-41). Figure 16
shows the subsequent multi-traces with a step of 1
msec in the range 18 to 21 msec. Induced single
modes do not persist during the unstable region, but
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change to various modes. The mode change has
several patterns and the figure shows typical pat­
terns. The expansion ofZs with exponents, as in Eq.
(3-20), does not show these modes explicitly but
only phase shift.

iiz) two kicker magnets According to Eq. (2-4),
the resonance frequencies of the kicker magnet
become approximately half when two kicker mag­
nets are connected in series. Measured resonance
frequencies are n l /2rr = 4.98 MHz and n 3/2rr =
14.0 MHz, and the sharpness of the resonances is
similar to that of the magnet K2. The buildup time
calculated for this condition is shown as K2-K3 in
Fig. 12. The f3max is large, around 19 msec. We have
observed a weaker instability around 20 msec, as
shown in Fig. 13-b.

The kicker magnet used for single-tum injection
test is longer. Its resonance frequencies are n l /2rr =
6.0 MHz and n 3/2rr = 16.0 MHz. The f3max
calculated and shown with Kl in Fig. 12 is rather
small. We have not observed any instability for this
magnet.

5. DISCUSSION

According to Pellegrini and Sands, the inverse
builduptime is proportional to (/11(4p? - 1), so ifthe
mode J.l = 0 is stable, modes, J.l = 1, 2,... are
unstable (and vice versa, depending on the sign of
(/11). This criterion does not apply to the instability
in the booster. We have observed the mode J.l = 0
and the modes J.l = 1,2,3 in the same condition.

Sacherer showed that the inverse buildup time is
proportional to Zl-(wk)hp.(Wk - w(). The transverse
impedance Zl-(Wk) is large when Wk (= (k + v)wo)

is equal to some resonance frequency. The Fourier
transform hp.(Wk - w() of the bunch profile is large
when Wk - w(= (k + v - q)wo) ~ O. These things
are similar to our results. The Z l-(w k ) corresponds to
Hmk and hp.(Wk - w() to G~~. At present, H mk is
expressed explicitly and the results of the calcu­
lation agree with the observations, while Z l- (Wk) is
given only in a general form. 5

We have thus derived a formula of the buildup
time of the coherent transverse instability due to a
kicker magnet whose termination is removed. The
results explain quite well the observations of the
buildup time and the oscillation mode and we
therefore believe that the instability is correctly
described.
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